DiskOnChip® IDE Pro

Flash Disk with IDE Interface

Highlights

DiskOnChip IDE Pro is a flash disk with an IDE interface. It combines advanced and proven DiskOnChip technology with a standard IDE interface to complement the DiskOnChip product line.

DiskOnChip IDE Pro provides:

- NAND flash-based technology
- High performance
- Platform independence
- Fast time to market no driver required
- 40-pin or 44-pin IDE connector
- Hamming code-based EDC/ECC
- 16-bit internal and external operation for 32Mbyte (MB) capacity and higher
- 16-bit external and 8-bit internal operation for 16MB capacity
- IDE Master/Slave modes of operation

IDE Modes

■ PIO modes 0-4

Performance

■ Host Data Transfer Rate (Max): 16.6MB/sec

Power Requirements

- Single power supply: 5V (± 10%)
- Current
 - o Active Mode (Max.): 55 mA
 - o Sleep/Idle Mode (Max): 0.18 mA

Operating Temperature

■ Temperature Range: 0°C to +70°C

Environmental Conditions

■ Storage Temperature: -55°C to + 80°C

■ Vibration: 1G, each axis

■ Shock: 10G, 3 axis

System Compatibility

 Compatible with devices that support the ATA-4 Attachment (without DMA support) for Disk Drives Standard.

Capacity and Packaging

- Available in 16 to 256MB capacity
- Vertical alignment
- 40-pin IDE connector (mm): 56.3 x 30.6 x 6.0 (LxWxH)
- 44-pin IDE connector (mm): 53.0 x 31.2 x 6.0 (LxWxH)

Table of Contents Introduction......4 Product Overview5 2.2 Pin Assignment......6 Theory of Operation9 Description of Command Block Registers......10 Supported ATA Command Set15 5.1.10 5.1.11 5.1.12 5.1.13 5.1.14 5.1.15 5.1.16 5.1.17 5.1.18 5.1.19 5.1.20 5.1.21

		5.1.22 Write Sector(s) – 30h, 31h	32
	5.2	Valid Error and Status Register Values	
6.	Inst	allation Requirements	35
	6.1	•	
	6.2		
7.	Pov	ver Management	37
8.	Spe	ecifications	38
	8.1	Environmental Specifications	38
	8.2	Mechanical Dimensions	38
	8.3	Physical Characteristics	
	8.4	Absolute Maximum Ratings	40
	8.5	Electrical Specifications 8.5.1DC Characteristics 8.5.2AC Characteristics	40
9.	Ord	ering Information	

1. Introduction

This data sheet includes the following sections:

Section 1: Overview of data sheet contents

Section 2: Product overview, including brief product description, pin assignment and description

Section 3: Theory of operation

Section 4: Descriptions of Command Block registers

Section 5: Modes of operation and supported ATA command set

Section 6: Installation requirements

Section 7: Power Management

Section 8: Environmental, mechanical, electrical and production specifications

Section 9: Product ordering information

For additional information on M-Systems' flash disk products, please contact one of the offices listed on the back page.

2. Product Overview

2.1 Product Description

DiskOnChip IDE Pro complements the DiskOnChip product line, offering full IDE capabilities, high performance, a built-in ECC system and flexible design options. It can be used in any system with an IDE bus and can work with any operating system, since the driver is handled at the BIOS level. DiskOnChip IDE Pro offers both internal and external 16-bit operation. This provides for superior performance over other IDE alternatives.

DiskOnChip IDE Pro is based on NAND flash technology. This technology is superior in its data storage characteristics, featuring the industry's highest write and erase performance, as well as the highest burst read/write transfer rate. Additionally, NAND flash technology is known for its high density and small die size, with the related cost and real estate benefits. Data integrity is guaranteed through embedded error detection and error correction code (EDC/ECC) that automatically detects and corrects data errors. The EDC/ECC algorithm is based on Hamming code and can detect up to 2 bits and correct 1 bit per 512 bytes.

DiskOnChip IDE Pro is ergonomically designed for easy installation and ready-to-run operation. Available in 40-pin and 44-pin connector packages, DiskOnChip IDE Pro fits easily into any platform with an IDE connector. A LED provides activity indication, while a specially designed case enables easy insertion. A screw hole can be used to secure DiskOnChip IDE Pro firmly in place.

DiskOnChip	IDE Pro	is available in	capacities	ranging from	16MB to	o 256MB,	making the	upgrade path	simple and
fast.									

2.2 Pin Assignment

See Table 1 for the pin assignment of DiskOnChip IDE Pro.

Table 1: Pin Assignment

Pin No.	Signal	Function	Pin No.	Sig	nal	Function
1	RESET#	Host reset	2	GN	ND	Ground
3	HD7	Host Data bit 7	4	Н	D8	Host Data bit 8
5	HD6	Host Data bit 6	6	Н	D 9	Host Data bit 9
7	HD5	Host Data bit 5	8	HD	10	Host Data bit 10
9	HD4	Host Data bit 4	10	HC)11	Host Data bit 11
11	HD3	Host Data bit 3	12	HC)12	Host Data bit 12
13	HD2	Host Data bit 1	14	HC)13	Host Data bit 13
15	HD1	Host Data bit 1	16	HC)14	Host Data bit 14
17	HD0	Host Data bit 0	18	HC)15	Host Data bit 15
19	GND	Ground	20	40-pin	VCC ¹	Supply Voltage
				44-pin	KEY	Cut pin
21	NC	Not Connected	22	GN	ND	Ground
23	HIOW#	Host I/O Write	24	GN	ND	Ground
25	HIOR#	Host I/O Read	26	GN	ND	Ground
27	IORDY	I/O Ready	28	CS	EL	Master/Slave Select
29	NC	Not Connected	30	GN	ND	Ground
31	INTRQ	Interrupt Request	32	IOIS	316#	CS I/O 16-bit
33	HA1	Host Address bit 1	34	PDI	AG#	Passed Diagnostics
35	HA0	Host Address bit 0	36	H	A 2	Host Address bit 2
37	CS0#	Chip Select 0	38	CS1#		Chip Select 1
39	DASP#	Drive Active/ Drive 1 Present	40	GND		Ground
41 ²	VCC	Supply Voltage	42 ²	VC	CC	Supply Voltage
43 ²	GND	Ground	44 ²	RESE	RVED	Reserved

¹⁾ In the 40-pin version, this pin is defined as VCC to reduce the need for an external power connector. In the 44-pin version, this pin is defined as KEY, according to the ATA standard.

NC = These pins are not connected internally.

RESERVED = All reserved signals must be left floating.

²⁾ DiskOnChip IDE Pro 40-pin version does not contain pins 41-44.

2.3 Pin Description

Table 2 contains the pin description of DiskOnChip IDE Pro.

Table 2: Pin Description

Signal	Pin No.	Description	Signal Type		
RESET#	1	Host reset: Active low.	Input		
HD15-HD0 3-18 Host Data bus [15:0]. 16-bit bi-directional data input/output bus. HI the most significant bit, while HD0 is the least significant bit. This becarries data, commands and status information between the host a DiskOnChip IDE Pro. The lower 8 bits are used for 8-bit register transfers. Data transfers are 16-bits wide.					
DIOW#	23	Device I/O Write: Active low. Gates the data from the bus into DiskOnChip IDE Pro. The clocking occurs on the rising edge of the signal.	Input		
DIOR#	25	Device I/O Read: Active low. Gates the data onto the bus from DiskOnChip IDE Pro. The clocking occurs on the falling edge of the signal.	Input		
IORDY	27 I/O Ready: Negated by DiskOnChip IDE Pro to extend the host transfer cycle (Read or Write) when the device is not ready to respond to a data transfer request.				
CSEL	28	Configuration Select: Determines the device configuration as either Master or Slave. If CSEL is negated, then the device address is Master; if CSEL is asserted, then the device address is Slave.			
INTRQ	31	Interrupt Request: Interrupt request from DiskOnChip IDE Pro to the host. The output of this signal is tri-stated if the host disables the interrupt. When asserted, this signal is negated by the device within 400 nsec of the negation of DIOR# that reads the Status register. When asserted, this signal is negated by the device within 400 nsec of the negation of DIOW# that writes the Command register.	Output		
IOIS16#	32	I/O IS I6-Bit: Active low. Asserted (low) by DiskOnChip IDE Pro to indicate to the host that the current cycle is a 16-bit (word) data transfer. When the signal is negated (high), an 8-bit data transfer is performed.	Output		
HA2-HA0	33,35,36	Host Address bus HA[2:0]: Select the registers in the DiskOnChip IDE Pro controller.	Input		
PDIAG#	34	Passed Diagnostics: Active low. Informs the Master drive that the self-diagnostic of the Slave drive has ended.	I/O		
CS0#	37	Host Chip Select 0: Active low. Selects the Command Block registers.	Input		
CS1#	38	Host Chip Select 1: Active low. Selects the Command Block registers.	Input		
DASP#	39	Drive Active/Drive1 Present: Active low. This is a time-multiplexed signal that indicates that a device is active, or that Device 1 is present.	I/O		
GND	2,19,22,24,26, 30,40,43	Ground	Ground		
VCC	41, 42	Power supply	Supply		

2.4 Capacities and CHS (Cylinder, Head, Sector)

Table 3 shows the various capacities available for DiskOnChip IDE Pro, as well as the CHS (Cylinder, Head and Sector) for each capacity. If DiskOnChip IDE Pro is not identified or your platform does not support auto-detection, use the following parameters to complete the Drive Parameter Table.

Table 3: Drive Parameters

Unformatted Disk Capacity (MB)	Formatted Disk Capacity (# of Sectors)	Cylinders	Heads	Sectors/Heads	Bytes/Sector
16	31744	496	2	32	512
32	63488	992	2	32	512
64	126976	248	16	32	512
128	253952	496	16	32	512
256	507904	992	16	32	512

3. Theory of Operation

3.1 Overview

Figure 1 shows DiskOnChip IDE Pro operation from the system level, including the major hardware blocks.

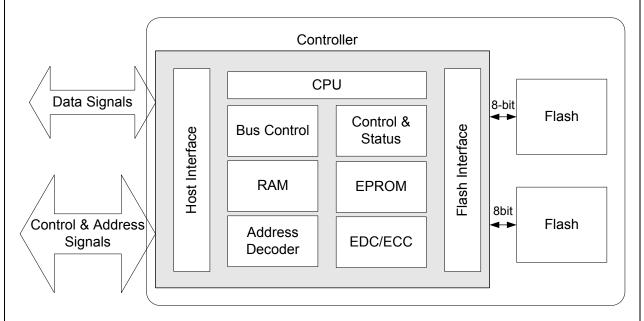


Figure 1: DiskOnChip IDE Pro Block Diagram

DiskOnChip IDE Pro integrates an IDE controller and flash devices. Communication with the host occurs through the host interface, using the standard ATA protocol. Communication with the flash device(s) occurs through the flash interface.

The IDE controller incorporates a Control & Status block that consists of the Command Block registers. The ATA commands that instruct the IDE controller which operation needs to be executed are written/read from the Command Block registers. The data blocks are also transferred via the Command Block Registers. A description of the Command Block registers can be found in Section 4.

The embedded EDC/ECC mechanism is based on the Hamming code algorithm, and can detect up to 2 bits and correct 1 bit per 512 bytes.

4. Description of Command Block Registers

The Command Block registers are used for sending commands to the device or posting status from the device. These registers include the Cylinder High, Cylinder Low, Device/Head, Sector Count, Sector Number, Command, Status, Features, Error, and Data registers. The Control Block registers are used for device control and to post alternate status. These registers include the Device Control and Alternate Status registers.

4.1 Status Register (Read)

This register contains the device status. The contents of this register are updated to reflect the current state of the device and the progress of any command being executed by the device. When BSY=0, the other bits in this register are valid. When BSY=1, other bits in this register are not valid. The contents of this register and all other Command Block Registers are not valid when the device is in Sleep mode.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR

Bit No.	Description
0	ERR. When set, indicates that an error has occurred during the previous command execution. The bits in the Error register indicate the cause. See Section 5.2 for an overview of error codes.
1	IDX (Index). Index is vendor specific.
2	CORR (Corrected Data). Indicates a correctable data error. The definition of what constitutes a correctable error is vendor specific.
3	DRQ (Data Request). When set, indicates that the device is ready to transfer a word or byte of data between the host and the device.
4	DSC (Drive Seek Complete). When set, indicates that the requested sector was found.
5	DF (Device Fault). Indicates that a device fault error has been detected.
6	DRDY (Device Ready). Indicates whether the device is capable of performing drive operations (commands). This bit is cleared at power up and remains cleared until the drive is ready to accept a command.
7	BSY (Busy). Set whenever the device has control of the Command Block registers. When BSY=1, the commands written to this register will be ignored by the device.

4.2 Command Register (Write)

This register contains the ATA command code that the host sends to the device. Command execution begins immediately after this register is written. This register is write-only when BSY=0 and DRQ=0. The contents of this register and all other Command Block registers are not valid when the device is in Sleep mode.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			Commai	nd Code			

4.3 Error Register (Read)

The Error register contains additional information about the source of an error. The content of this register is only valid when BSY=0 and DRQ=0 in the Status register and the ERR bit is asserted.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF

Bit No.	Description
0	AMNF (Address Mark Not Found). Indicates that the data address mark has not been found after finding the correct ID field.
1	TKONF (Track 0 Not Found). Indicates that track 0 has not been found during a RECALIBRATE command.
2	ABRT (Abort). Indicates that the requested command has been aborted because the command code or a command parameter is invalid or some other error has occurred.
3	MCR (Media Change Request). Not supported.
4	IDNF (ID-field Not Found). Requested sector ID-field Not Found.
5	MC (Media Changed). Not supported.
6	UNC (Uncorrected). Non-correctable data error encountered.
7	Reserved.

4.4 Feature Register (Write)

This register is command specific, and is write-only when BSY=0 and DRQ=0.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			Command	d Specific			

4.5 Sector Number Register (LBA 0-7) (Read/Write)

The content of this register depends on the selected mode of address translation: CHS (Cylinder, Head, Sector) or LBA (Logical Block Address) mode. In CHS mode (LBA=0 in Device/Head register), this register contains the subsequent command's starting sector number, which can be from 1 to the maximum number of sectors per track. In LBA mode (LBA=1 in Device/Head register), this register contains LBA bits 0-7, which are updated upon command completion. This register is write-only when BSY=0 and DRQ=0.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
CHS Mode									
SN7	SN6	SN5	SN4	SN3	SN2	SN1	SN0		
	LBA Mode								
LBA7	LBA6	LBA5	LBA5	LBA3	LBA2	LBA1	LBA0		

Bit No.	Description							
	CHS Mode							
0-7	SN[0:7] (Sector Numbers 0-7)							
	LBA Mode							

0-7 LBA[0:7] (Logical Block Addresses 0-7)

4.6 Cylinder Low Register (LBA 8-15) (Read/Write)

The contents of this register depend on the value of LBA bits 8-15 in the Device/Head register. If LBA=0, this register contains the 8 least significant bits of the starting cylinder address (CL bits 0-7). If LBA=1, this register contains LBA bits 8-15. This register is write-only when BSY=0 and DRQ=0.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
CHS Mode												
CL7	CL6	CL5	CL4	CL3	CL2	CL1	CL0					
	LBA Mode											
LBA15	LBA14	LBA13	LBA12	LBA11	LBA10	LBA9	LBA8					

Bit No.	Description						
	CHS Mode						
0-7	CL[0:7] (Cylinder Low Bits 0-7)						
	LBA Mode						
0-7	LBA[8:15] (Logical Block Addresses 8-15)						

4.7 Cylinder High Register (LBA 16-23) (Read/Write)

In CHS mode, the Cylinder High register contains the 8 high bits of the cylinder numbers, and reflects their status at command completion. In LBA mode, this register contains LBA bits 16-23 and reflects their status at command completion. This register is write-only when BSY=0 and DRQ=0.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
CHS Mode											
CH7	CH6	CH5	CH4	CH3	Ch2	CH1	CH0				
	LBA Mode										
LBA23	LBA22	LBA21	LBA20	LBA19	LBA18	LBA17	LBA16				

Bit No.	Description						
	CHS Mode						
0-7	CH[0:7] (Cylinder High Bits 0-7)						
	LBA Mode						
0-7	LBA[16:23] (Logical Block Addresses 16-23)						

4.8 Device/Head Register (Read/Write)

This register selects the device and defines address translation mode as CHS or LBA. In CHS mode it provides the head address. In LBA mode, it provides the assignment for LBA[27:24]. This register is write-only when BSY=0 and DRQ=0.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
CHS Mode											
1	LBA	1	DEV	HS3	HS2	HS1	HS0				
	LBA Mode										
	Rese	rved		LBA27	LBA26	LBA25	LBA24				

Bit No.	Description
	CHS Mode
0-3	HS[0:3] (Head Starting Address Bits 0-3). When LBA=0 (CHS), these bits contain the head address of the starting CHS address. Bit HS3 is the most significant bit.
4	DEV (Device Address). 0 = Master drive selected. 1 = Slave drive selected.
6	LBA (Address Mode Select). 0 = CHS (Cylinder, Head, Sector) mode. 1 = LBA (Logical Block Address) mode.
	LBA Mode
0-3	LBA[24:27] (Logical Block Addresses 24-27). When LBA=1 (LBA mode), these bits represent LBA bits 24-27.
4-7	Reserved.

4.9 Sector Count Register (Read/Write)

The Sector Count register contains the number of data sectors requested to be transferred during a read or write operation between the host and the device. A zero value specifies 256 sectors. The command is successful if this register is zero on command completion. This register is write-only when BSY=0 and DRQ=0.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			Sector	Count			

4.10 Data Register (Read/Write)

The Data register is a 16-bit register used to transfer data blocks between the device's data buffer and the host. This register can be written or the content is valid on read when DRQ=1.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D7	D6	D5	D4	D3	D2	D1	D0

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
D15	D14	D13	D12	D11	D10	D9	D8	

4.11 Alternate Status Register (Read)

This register contains the device status. The contents of this register are updated to reflect the current state of the device and the progress of any command being executed by the device. The contents of this register, except for BSY, is ignored when BSY=1. BSY is valid at all times. The contents of the register and all other Command Block registers are not valid while a device is in Sleep mode.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR

See Section 4.1 for the bit descriptions.

4.12 Device Control Register (Write)

This register allows a host to software reset attached devices and to enable or disable the assertion of the INTRQ signal by a selected device. This register can only be written when DMACK# is not asserted.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Reserved			SRST	#IEN	Reserved

Bit No.	Description
0	Reserved. Clear this bit to 0.
1	#IEN (Interrupt Enable). 0 = Enables interrupts to the host (using the #IREQ tri-state pin). 1 = Disables all pending interrupts (#IREQ in high-Z).
2	SRST (Soft Reset). This is the host software reset bit.
3-7	Reserved.

5. Supported ATA Command Set

This section defines the format of the commands the host sends to DiskOnChip IDE Pro. The commands are issued to the device by loading the required registers in the command block with the supplied parameters, and then writing the command code to the register.

DiskOnChip IDE Pro supports the IDE commands listed in Table 4.

Table 4: Supported IDE Commands

Command Code	Command Name			Register		
Command Code	Command Name	FR	sc	SN	CY	D/H
98h E5h	CHECK POWER MODE	-	-	-	-	D
90h	EXECUTIVE DEVICE DIAGNOSTIC	-	-	-	-	D
ECh	IDENTIFY DEVICE	-	-	-	-	D
97h E3h	IDLE	-	✓	-	-	D
95h E1h	IDLE IMMEDIATE	-	-	-	-	D
91h	INITIALIZE DEVICE PARAMETERS	-	√	-	-	D+H
E4h	READ BUFFER	-	-	-	-	D
C4h	READ MULTIPLE	-	✓	✓	✓	D+H
20h 21h	READ SECTOR(S)	-	✓	✓	✓	D+H
22h 23h	READ LONG SECTOR(S)	-	-	✓	✓	D+H
40h 41h	READ VERIFY SECTOR(S)	-	√	√	✓	D+H
10h	RECALIBRATE	-	-	-	-	D
70h	SEEK	=	-	✓	✓	D+H
EFh	SET FEATURES	✓	-	-	-	D
C6h	SET MULTIPLE MODE	-	✓	-	-	D
99h E6h	SET SLEEP MODE	-	-	-	-	D
96h E2h	STANDBY	=	-	-	-	D
94h E0h	STANDBY IMMEDIATE	-	-	-	-	D
E8h	WRITE BUFFER	-	-	-	-	D
3Ch	WRITE VERIFY	-	✓	✓	✓	✓
C5h	WRITE MULTIPLE	-	✓	✓	✓	D+H
30h 31h	WRITE SECTOR(S)	-	✓	✓	✓	D+H
32h 33h	WRITE LONG SECTOR(S)	-	✓	✓	✓	D+H
00h	NOP	-	-	-	-	D

Definition of Abbreviations:

Registers – FR: Feature register, SC: Sector Count register, SN: Sector Number register, CY: Cylinder registers, DH: Drive/Head register

Symbols – ✓: The register is valid, D: Only drive parameters are valid, H: Only head parameters are valid

5.1 Command Set Description

5.1.1 Check Power Mode – 98h, E5h

This command checks the current power mode of DiskOnChip IDE Pro.

When this command is issued in Sleep mode, or is being set to/recovering from Sleep mode, DiskOnChip IDE Pro sets the BSY bit in the Status register and the Sector Count register to 00h. Then the BSY bit is cleared, and an interrupt is generated.

When DiskOnChip IDE Pro is in Idle mode, it sets the BSY bit in the Status register and the Sector Count register to FFh. Then the BSY bit in the Status register is cleared, and an interrupt is generated.

INPUT										
Register	7	6	5	4	3	2	1	0		
Features										
Sector Count										
Sector Number										
Cylinder Low										
Cylinder High										
Device/Head	1		1	D						
Command		98h or E5h								

OUTPUT									
Register	7	6	5	4	3	2	1	0	
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR	
	0	1	0	1	0	0	0	0	
Sector Count			Powe	er Mode Co	de (00h oi	FFh)			
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF	
		0	0	0	0	0	0	0	

5.1.2 Execute Drive Diagnostics - 90h

This command performs self-diagnostics on various internal components of DiskOnChip IDE Pro. Results of the diagnostics are reported in the Error register. Note that the bit definitions for the Error register do not apply to this command. Instead, the value in the Error register is a diagnostic code.

INPUT											
Register	7	6	5	4	3	2	1	0			
Features											
Sector Count											
Sector Number											
Cylinder Low											
Cylinder High											
Device/Head				D							
Command				90)h	•					

OUTPUT										
Register	7	6	5	4	3	2	1	0		
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR		
	0	✓	0	✓	✓	✓	0	✓		
Error		Diagnostic code (see below)								

Code	Description							
01H	No error detected							
02H	Formatter device error							
03H	Sector buffer error							
04H	ECC logic error							
05H	Slave failed							

5.1.3 Identify Drive – ECh

The Identify Drive command enables the host to receive parameter information from DiskOnChip IDE Pro. When the command is issued, the device performs the following sequence: sets the BSY bit, prepares to transfer the 256 words of device identification data to the host, sets the DRQ bit, clears the BSY bit, and generates an interrupt. The host can then transfer the data by reading the Data register. All reserved bits or words are set to 0. See Table 5 to identify drive information for this device.

INPUT										
Register	7	6	5	4	3	2	1	0		
Features										
Sector Count										
Sector Number										
Cylinder Low										
Cylinder High										
Device/Head				D						
Command				E	Ch					

OUTPUT										
Register	7	6	5	4	3	2	1	0		
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR		
	0	✓	0	1	✓	✓	0	0		
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF		
		0	0	0	0	✓	0	0		

Table 5: Identify Drive Descriptions

Word	Data	Description
0	040AH	General configuration bit-significant information
1	XXXX	Number of cylinders
2	0000H	Reserved
3	XXXX	Number of heads
4	0000H	Number of unformatted bytes per track
5	0200H	Number of unformatted bytes per sector
6	XXXX	Number of sectors per track
7-8	XXXX	Number of sectors per device (Word7= MSW, Word 8= LSW)
9	0000H	Reserved
10-19	XXXX	Serial Number in ASCII
20	0002H	Buffer type: dual ported, multi-sector, with read cache
21	0002H	Buffer size in 512 byte increments
22	0004H	# of ECC bytes passed on Read/Write Long Commands
23-26	XXXX	Firmware revision in ASCII
27-46	XXXX	Model number in ASCII
47	0001H	Maximum of 1 sector on Read/Write Multiple command
48	0000H	Cannot perform double word I/O (32 bits)
49	0200H	Capabilities: DMA not Supported (bit 8), LBA supported (bit 9)
50	0000H	Reserved
51	0200H	PIO data transfer cycle timing mode 2
52	0000H	DMA data transfer cycle timing mode not supported
53	0001H	Word 54-58 are valid
54	XXXX	Current numbers of cylinders
55	XXXX	Current numbers of heads
56	XXXX	Current sectors per track
57-58	XXXX	Current capacity in sectors (LBA)(Word 57= LSW, Word 58= MSW)
59	010XH	Multiple sector setting is valid
60-61	XXXX	Total number of sectors addressable in LBA Mode
62-127	0000H	Reserved
128-159	0000H	Reserved vendor unique bytes
160-255	0000H	Reserved

5.1.4 Idle - 97h, E3h

This command causes DiskOnChip IDE Pro to set BSY, enter Idle mode, clear BSY and generate an interrupt. If the sector count is not 0, it is intercepted as a timer count (with a time base of 5 milliseconds, which differs from the ATA specification) and automatic Power-Down mode is enabled. If the sector count is 0, automatic Power-Down mode is disabled.

INPUT												
Register	7	6	5	4	3	2	1	0				
Features												
Sector Count		Timer Count (5 msec increments)										
Sector Number												
Cylinder Low												
Cylinder High												
Device/Head				D								
Command				E3h c	or 97h							

OUTPUT										
Register	7	6	5	4	3	2	1	0		
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR		
	0	✓	0	1	0	0	0	✓		
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF		
		0	0	0	0	✓	0	0		

5.1.5 Idle Immediate – 95h, E1h

This command causes DiskOnChip IDE Pro to set BSY, enter Idle mode, clear BSY and generate an interrupt.

INPUT									
Register	7	6	5	4	3	2	1	0	
Features									
Sector Count									
Sector Number									
Cylinder Low									
Cylinder High									
Device/Head				D					
Command				E1h c	or 95h				

OUTPUT									
Register	7	6	5	4	3	2	1	0	
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR	
	0	✓	0	1	0	0	0	✓	

Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF
		0	0	0	0	✓	0	0

5.1.6 Initialize Drive Parameters – 91h

Initialize Drive Parameters allows the host to alter the number of sectors per track and the number of heads per cylinder. This command does not check the validity of counts of sectors and heads. If an invalid value is set, an error is reported when another command attempts an invalid access. The Sector Count register specifies the number of logical sectors per logical track, and the Device/Head register specifies the maximum head number.

INPUT											
Register	7	6	5	4	3	2	1	0			
Features											
Sector Count			Nur	nber of sec	ctors per tr	ack.					
Sector Number											
Cylinder Low											
Cylinder High											
Device/Head	Х	0	Х	D	Н	ead counts	per cylind	er			
Command				9′	1h						

	OUTPUT								
Register	7	6	5	4	3	2	1	0	
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR	
	0	✓	0	1	✓	✓	0	✓	
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF	
		0	0	0	0	√	0	0	

5.1.7 Read Buffer - E4h

This command enables the host to read the current contents of the device's sector buffer. When this command is issued, the device sets the BSY bit, enables the sector buffer for a read operation, sets the DRQ bit, clears the BSY bit, and generates an interrupt. The host then reads the data from the buffer.

INPUT									
Register	7	6	5	4	3	2	1	0	
Features									
Sector Count									
Sector Number									
Cylinder Low									
Cylinder High									
Device/Head				D					
Command				E4	4h				

			OU.	TPUT				
Register	7	6	5	4	3	2	1	0

Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR
	0	✓	0	1	1	0	0	✓
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF
		0	0	0	0	✓	0	0

5.1.8 Read Multiple - C4h

This command functions like the Read Sector(s) command, but instead of issuing interrupts for each sector, it issues interrupts when a block is transferred that contains the counts of sectors defined by the Set Multiple command. The DRQ required for the transfer should be set only at the start of the data block and does not affect other sectors. When the Read Multiple command is issued, the requested sectors (not the block counts or the sector counts in a block) are written into the Sector Count register. Errors occurring during command execution are reported at the start of a complete or partial block transfer. The transfer continues even if DRQ is set and the data is corrupted. After the data transfer, the task file content (with the block data containing the sectors where the error occurred) is undefined. To obtain valid error information the host must request a re-transmission. The next block or part of a block is transferred only if the error is correctable. For all other errors, the command is aborted after transferring a block containing an error.

INPUT											
Register	7	6	5	4	3	2	1	0			
Features											
Sector Count		Th	e number	of sectors/l	ogical bloc	ks to trans	fer				
Sector Number		Sect	or[7:0] or L	BA[7:0] of	the sector	LBA to tra	nsfer				
Cylinder Low		Cylind	ler[7:0] or L	_BA[15:8] c	of the secto	r/LBA to tr	ansfer				
Cylinder High		Cylinde	r[15:8] or L	BA[23:16]	of the sec	tor/LBA to	transfer				
Device/Head	1	LBA	1	D		Head (LE	3A 27-24)				
Command				C.	4h						

	OUTPUT										
Register	7	6	5	4	3	2	1	0			
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR			
	0	✓	0	1	✓	✓	0	✓			
Sector Count											
Sector Number											
Cylinder Low											
Cylinder High											
Device/Head											
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF			
		√	0	✓	0	✓	0	0			

5.1.9 Read Sector(s) – 20h, 21h
This command allows the host to read up to 256 sectors as specified in the Sector Count register. A sector count of 0 indicates a transfer request of 256 sectors. The transfer starts from the sector specified in the Sector Number register. DRQ is set prior to the transfer, regardless of the error state. The command ends by placing the cylinder, head and sector number of the last read sector in the task file. If an error occurs, the read operation aborts in the sector with the error. The Cylinder, Head and Sector number of the sector with the error is placed in the task file. The error data remains in the data buffer. The Cylinder Low, Cylinder High, Device/Head and Sector Number or LBA registers
specify the starting sector address to be read. The Sector Count register specifies the number of sectors to be transferred.

INPUT											
Register	7	6	5	4	3	2	1	0			
Features											
Sector Count		Th	ne number	of sectors/	logical bloc	cks to trans	fer				
Sector Number		Sector[7:0] or LBA[7:0] of the sector/LBA to transfer									
Cylinder Low		Cylind	der[7:0] or l	_BA[15:8] (of the secto	or/LBA to tr	ansfer				
Cylinder High		Cylinde	er[15:8] or I	_BA[23:16]	of the sec	tor/LBA to	transfer				
Device/Head	1 LBA 1 D H[3:0] or LBA[27:24] of the sector/LBA to transfer							ector/LBA			
Command			20h (witl	h retry) and	d 21h (with	out retry)					

	OUTPUT											
Register	7	6	5	4	3	2	1	0				
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR				
	0	1	0	1	✓	✓	0	✓				
Sector Count												
Sector Number												
Cylinder Low												
Cylinder High												
Device/Head												
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF				
LIIOI		0.10	IVIO	IDINI	IVIOIX	ADIXI	TIXON	ANVIENT				
	0	\checkmark	0	✓	0	✓	0	0				

5.1.10 Read Long Sector - 22H, 23h

Read Long Sector (with and without retry) is similar to the Read Sectors command, except that it returns 516 bytes of data instead of 512 bytes. During a Read Long Sector command, DiskOnChip IDE Pro does not check the ECC bytes to determine if there has been a data error. Only single sector read long operations are supported. The transfer consists of 512 bytes of data transferred in word mode, followed by 4 bytes of random data transferred in byte mode. Random data is returned instead of ECC bytes because of the nature of the ECC system used.

INPUT										
Register	7	6	5	4	3	2	1	0		
Features										
Sector Count	The n	umber of s	ectors/logic		to transfer. atibility	This shoul	ld be set to	01 for		
Sector Number		Sect	or[7:0] or L	BA[7:0] of	the sector	LBA to tra	nsfer			
Cylinder Low		Cylinder[7:0] or LBA[15:8] of the sector/LBA to transfer								
Cylinder High		Cylinde	r[15:8] or l	_BA[23:16]	of the sec	tor/LBA to	transfer			

Device/Head	1	LBA	1	D	H[3:0] or LBA[27:24] of the sector/LBA to transfer		
Command			22h (with	ith retry) and 23h (without retry)			

	OUTPUT											
Register	7	6	5	4	3	2	1	0				
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR				
	0	✓	0	1	✓	✓	0	✓				
Sector Count												
Sector Number												
Cylinder Low												
Cylinder High												
Device/Head												
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF				
LIIOI	11											
		0	0	✓	0	√	0	0				

5.1.11 Read Verify Sector(s) - 40h, 41h

The Read Verify Sectors command verifies one or more sectors on DiskOnChip IDE Pro by transferring data from the flash media to the data buffer in the controller and verifying that the ECC is correct. This command is performed identically to the Read Sector(s) command, except that DRQ is not asserted, and no data is transferred to the host.

When the command is accepted, DiskOnChip IDE Pro sets BSY. When the requested sectors have been verified, DiskOnChip IDE Pro clears BSY and generates an interrupt. Upon command completion, the Command Block registers contain the cylinder, head, and sector number of the last sector verified. If an error occurs, the command terminates at the sector where the error occurs. The Command Block registers contain the cylinder, head and sector number of the sector where the error occurred. The Sector Count register contains the number of sectors not yet verified.

	INPUT											
Register	7	6	5	4	3	2	1	0				
Features												
Sector Count		Т	he number	of sectors	/logical blo	cks to veri	fy					
Sector Number		Sector[7:0] or LBA[7:0] of the sector/LBA to verify										
Cylinder Low		Cylin	der[7:0] or	LBA[15:8]	of the sect	tor/LBA to	verify					
Cylinder High		Cylind	er[15:8] or	LBA[23:16	3] of the se	ctor/LBA to	verify					
Device/Head	1	1 LBA 1 D H[3:0] or LBA[27:24] of the sector/LBA to transfer						ctor/LBA				
Command		40h (with retry) and 41h (without retry)										

	OUTPUT											
Register	7	6	5	4	3	2	1	0				
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR				
	0	1	0	1	✓	✓	0	✓				
Sector Count												
Sector Number												
Cylinder Low												
Cylinder High												
Device/Head												
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF				
		✓	0	✓	0	✓	0	0				

5.1.12 Recalibrate - 1Xh

When this command is executed in CHS addressing mode, the registers Cylinder High, Cylinder Low, and the head portion of Device/Head are set to 0. The Sector Number register is set to 1. If the command is executed in LBA addressing mode, the registers Cylinder High, Cylinder Low, the head portion of the Device/Head, and the Sector Number register are set to zero.

INPUT										
Register	7	6	5	4	3	2	1	0		
Features										
Sector Count										
Sector Number										
Cylinder Low										
Cylinder High										
Device/Head	1		1	D						
Command				1)	Kh					

OUTPUT								
Register	7	6	5	4	3	2	1	0
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR
	0	1	0	1	0	0	0	✓
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF
		0	0	0	0	✓	0	0

5.1.13 Seek - 7Xh

This command seeks and picks up the head to the track specified in the Command Block registers.

	INPUT										
Register	7	6	5	4	3	2	1	0			
Features											
Sector Count				Sector	count						
Sector Number		Sector[7:0] or LBA[7:0] of the sector/LBA to verify									
Cylinder Low		Cylin	nder[7:0] or	LBA[15:8]	of the sect	tor/LBA to	verify				
Cylinder High		Cylind	ler[15:8] or	LBA[23:16	3] of the se	ctor/LBA to	verify				
Device/Head	1	LBA	1	D	H[3:0] or LBA[27:24] of the sector/LBA to transfer						
Command				7)	Kh						

	OUTPUT								
Register	7	6	5	4	3	2	1	0	
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR	
	0	✓	0	1	0	0	0	✓	
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF	
		0	0	√	0	√	0	0	

5.1.14 Set Features - EFh

The host uses this command to establish or select certain features, described in Table 6.

	INPUT											
Register	7	6	5	4	3	2	1	0				
Features		F	eature nur	nber accor	ding to the	table belov	W					
Sector Count			(Configurati	on required	d						
Sector Number												
Cylinder Low												
Cylinder High												
Device/Head				D								
Command				El	-h							

	OUTPUT								
Register	7	6	5	4	3	2	1	0	
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR	
	0	✓	0	1	0	0	0	✓	
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF	
		0	0	0	0	✓	0	0	

Table 6: Supported Features

Feature	Description
01H	Enable 8 bit data transfer
81H	Disable 8-bit data transfer.

5.1.15 Set Multiple Mode - C6h

This command enables DiskOnChip IDE Pro to perform multiple Read and Write operations and establishes the block count (counts of sectors making up a block) for these commands. The Sector Count register is loaded with the number of sectors per block.

If the Sector Count register contains a valid value and the block count is supported, this value is loaded for all subsequent Read Multiple and Write Multiple commands and execution of these commands is enabled. If a block count is not supported, an Aborted command error is posted, and Read Multiple and Write Multiple commands are disabled. If the Sector Count register contains 0 when the command is issued, multiple Read and Write commands are disabled. At power on, or after a hardware or (unless disabled by a Set Feature command) software reset, the default mode is Read and Write Multiple disabled.

	INPUT												
Register	7	6	5	4	3	2	1	0					
Features													
Sector Count			5	Sector Cou	nt per Bloc	k							
Sector Number													
Cylinder Low													
Cylinder High													
Device/Head				D									
Command				C	6h								

	OUTPUT											
Register	7	6	5	4	3	2	1	0				
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR				
	0	✓	0	1	0	0	0	✓				
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF				
		0	0	0	0	✓	0	0				

5.1.16 Set Sleep Mode - 99h, E6h

This command causes DiskOnChip IDE Pro to set BSY, enter Sleep mode, clear BSY and generate an interrupt. Recovery from Sleep mode is accomplished by issuing another command, soft reset or hard reset.

	INPUT											
Register	7	6	5	4	3	2	1	0				
Features												
Sector Count												
Sector Number												
Cylinder Low												
Cylinder High												
Device/Head				D								
Command				99h c	r E6h							

	OUTPUT										
Register	7	6	5	4	3	2	1	0			
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR			
	0	1	0	1	0	0	0	✓			
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF			
		0	0	0	0	✓	0	0			

5.1.17 Standby - 96h, E2h

This command causes the device to set BSY, enter Sleep mode (which corresponds to ATA Standby mode), clear the BSY bit, and assert INTRQ. If the Sector Count register is not 0, the Standby timer is enabled. The value in the Sector Count register determines the time programmed into the Standby timer. If the Sector Count register is 0, the Standby timer is disabled.

			IN	PUT				
Register	7	6	5	4	3	2	1	0
Features								
Sector Count				Time per	iod value			
Sector Number								
Cylinder Low								
Cylinder High								
Device/Head				D				
Command				96h o	r E2h			

	OUTPUT										
Register	7	6	5	4	3	2	1	0			
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR			
	0	✓	0	1	0	0	0	0			
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF			

Г								
		0	0	0	0	1	0	0
		U	U	U	U	,	U	U

5.1.18 Standby Immediate - 94h, E0h

This command causes the device to immediately enter Standby mode.

INPUT												
Register	7	6	5	4	3	2	1	0				
Features												
Sector Count												
Sector Number												
Cylinder Low												
Cylinder High												
Device/Head				D								
Command		94h or E0h										

	OUTPUT										
Register	7	6	5	4	3	2	1	0			
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR			
	0	✓	0	1	0	0	0	1			
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF			
		0	0	0	0	✓	0	0			

5.1.19 Write Buffer - E8h

The Write Buffer command enables the host to rewrite the contents of the DiskOnChip IDE Pro sector buffer with the desired data string. This data buffer can be accessed and read by the Read Buffer command.

	INPUT										
Register	7	6	5	4	3	2	1	0			
Features											
Sector Count											
Sector Number											
Cylinder Low											
Cylinder High											
Device/Head				D							
Command				E	8h						

	OUTPUT									
Register	7	6	5	4	3	2	1	0		
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR		
	0	1	0	✓	0	0	0	✓		
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF		

						i .	
	^	^	^	^	./	_ ^	^
	()	()	()	()	v		()
	•	•	•	•			

5.1.20 Write Long Sector - 32h, 33h

This command is similar to the Write Sector(s) command, except that it writes 516 bytes instead of 512 bytes. This command can write only one sector at a time. The transfer consists of 512 bytes of data transferred in word mode, followed by four bytes of ECC transferred in byte mode. The four ECC bytes transferred by the host cannot be used by DiskOnChip IDE Pro. The device discards these four bytes and writes the sector with valid ECC fields.

	INPUT										
Register	7	6	5	4	3	2	1	0			
Features											
Sector Count				Sector	count						
Sector Number		Sector[7:0] or LBA[7:0] of the first sector/LBA to transfer									
Cylinder Low		Cylinder	[7:0] or LB	A[15:8] of t	the first sec	ctor/LBA to	transfer				
Cylinder High		Cylinder[15:8] or LB	A[23:16] of	f the first se	ector/LBA t	o transfer				
Device/Head	1	1 LBA 1 D H[3:0] or LBA[27:24] of the starting sector/LBA									
Command		32h (with retry) or 33h (without retry)									

	OUTPUT									
Register	7	7 6 5 4 3 2 1 0								
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR		
0 1 0 0								✓		
Sector Count										
Sector Number										
Cylinder Low										
Cylinder High										
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF		
		0	0	✓	0	√	0	✓		

5.1.21 Write Multiple Command – C5h

This command is similar to the Write Sectors command. DiskOnChip IDE Pro sets BSY within 400 nsec of accepting the command. Interrupts are not issued for every sector, but rather on the transfer of a block that contains the number of sectors defined by the Set Multiple command. Command execution is identical to the Write Sectors operation, except that the number of sectors defined by the Set Multiple command is transferred without intervening interrupts.

DRQ qualification of the transfer is required only at the start of the data block, not on each sector. The block count of sectors to be transferred without intervening interrupts is programmed by the Set Multiple Mode command, which must be executed prior to the Write Multiple command.

	INPUT										
Register	7	6	5	4	3	2	1	0			
Features											
Sector Count				Sector	count						
Sector Number		Sector[7:0] or LBA[7:0] of the first sector/LBA to transfer									
Cylinder Low		Cylinder	[7:0] or LB	A[15:8] of	the first sec	ctor/LBA to	transfer				
Cylinder High		Cylinder[15:8] or LB	A[23:16] of	f the first se	ector/LBA t	o transfer				
Device/Head	LBA D H[3:0] or LBA[27:24] of the starting sector/LBA										
Command	C5h										

	OUTPUT									
Register	er 7 6 5 4 3 2 1 0									
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR		
	✓	✓	0	✓						
Sector Count	ount									
Sector Number										
Cylinder Low										
Cylinder High										
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF		
		0	0	✓	0	✓	0	0		

5.1.22 Write Sector(s) - 30h, 31h

This command writes from 1 to 256 sectors as specified in the Sector Count register. A sector count of 0 requests 256 sectors. The transfer begins at the sector specified in the Sector Number register. When this command is accepted, DiskOnChip IDE Pro sets BSY, then sets DRQ and clears BSY, and then waits for the host to fill the sector buffer with the data to be written. No interrupt is generated to start the first buffer fill operation. No data should be transferred by the host until it clears BSY.

For multiple sectors, after the first sector of data is in the buffer, BSY is set and DRQ is cleared. After the next buffer is ready for data, BSY is cleared, DRQ is set and an interrupt is generated. When the final sector of data is transferred, BSY is set and DRQ is cleared. It remains in this state until the command is completed, at which time BSY is cleared and an interrupt is generated.

If an error occurs during a write of more than one sector, writing terminates at the sector where the error occurs. The Command Block registers contain the cylinder, head and sector number of the sector where the error occurred. The host may then read the command block to determine what error has occurred, and in which sector.

	INPUT									
Register	7	6	5	4	3	2	1	0		
Features										
Sector Count		Sector count								
Sector Number		Sector[7:0] or LBA[7:0] of the first sector/LBA to transfer								
Cylinder Low		Cylinder	[7:0] or LB	A[15:8] of t	the first sec	ctor/LBA to	transfer			
Cylinder High		Cylinder[15:8] or LB	A[23:16] of	f the first se	ector/LBA t	o transfer			
Device/Head	LBA D H[3:0] or LBA[27:24] of the starting sector/LBA									
Command	30h (with retry) or 31h (without retry)									

	OUTPUT									
Register	7	7 6 5 4 3 2 1 0								
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR		
0 1 1 0								✓		
Sector Count										
Sector Number										
Cylinder Low										
Cylinder High										
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF		
		0	0	✓	0	✓	0	0		

5.1.23 Write Verify Sector(s) - 3Ch

This command writes from 1 to 256 sectors as specified in the Sector Count register. A sector count of 0 requests 256 sectors. The transfer begins at the sector specified in the Sector Number register. When this command is accepted, DiskOnChip IDE Pro sets BSY, then sets DRQ and clears BSY, then waits for the host to fill the sector buffer with the data to be written. No interrupt is generated to start the first buffer fill operation. No data should be transferred by the host until BSY has been cleared by the host.

For multiple sectors, after the first sector of data is in the buffer, BSY is set and DRQ is cleared. After the next buffer is ready for data, BSY is cleared, DRQ is set and an interrupt is generated. When the final sector of data is transferred, BSY is set and DRQ is cleared. It remains in this state until the command is completed, at which time BSY is cleared and an interrupt is generated.

If an error occurs during a write of more than one sector, writing terminates at the sector where the error occurs. The Command Block registers contain the cylinder, head and sector number of the sector where the error occurred. The host may them read the command block to determine what error has occurred, and in which sector.

	INPUT										
Register	7	6	5	4	3	2	1	0			
Features											
Sector Count		Sector count									
Sector Number		Sector[7:0] or LBA[7:0] of the first sector/LBA to transfer									
Cylinder Low		Cylinder	[7:0] or LB	A[15:8] of	the first sec	ctor/LBA to	transfer				
Cylinder High		Cylinder[15:8] or LB	A[23:16] of	f the first se	ector/LBA t	o transfer				
Device/Head	1	1 LBA 1 D H[3:0] or LBA[27:24] of the starting sector/LBA									
Command	3Ch										

	OUTPUT									
Register	7	7 6 5 4 3 2 1 0								
Status	BSY	DRDY	DF	DSC	DRQ	CORR	IDX	ERR		
	0	0 / / 1 / 0 /								
Sector Count										
Sector Number										
Cylinder Low										
Cylinder High										
Error	R	UNC	MC	IDNF	MCR	ABRT	TKONF	AMNF		
		0	0	√	0	√	0	0		

5.2 Valid Error and Status Register Values

Command		Error F	Register			Stat	tus Reg	ister	
	UNC	IDNF	ABRT	AMNF	DRDY	DF	DSC	CORR	ERR
Check Power Mode				✓	✓	✓	✓		✓
Execute Drive Diagnostic					✓		✓		✓
Format Track		✓		✓	✓	✓	✓		✓
Identify Drive				✓	✓	✓	✓		✓
Idle				✓	✓	✓	✓		✓
Idle Immediate				✓	✓	✓	✓		✓
Initialize Drive Parameters					✓		✓		✓
Read Buffer				✓	✓	✓	✓		✓
Read Multiple	✓	✓		✓	✓	✓	✓	✓	✓
Read Long Sector		✓		✓	✓	✓	✓		✓
Read Sector(s)	✓	✓		✓	✓	✓	✓	✓	✓
Read Verify Sectors	✓	✓		✓	✓	✓	✓	✓	✓
Recalibrate				✓	✓	✓	✓		✓
Seek		✓		✓	✓	✓	✓		✓
Set Features				✓	✓	✓	✓		✓
Set Multiple Mode				✓	✓	✓	✓		✓
Set Sleep Mode				✓	✓	✓	✓		✓
Standby				✓	✓	✓	✓		✓
Standby Immediate				✓	✓	✓	✓		✓
Write Buffer				✓	✓	✓	✓		✓
Write Long Sector		✓		✓	✓	✓	✓		✓
Write Multiple		✓		✓	✓	✓	✓		✓
Write Sector(s)		√		✓	✓	✓	✓		✓
Write Verify Sector(s)		✓		✓	✓	✓	✓		✓
Invalid Command Code				✓	✓	✓	✓		✓

Definition of Abbreviations:

✓= Valid on this command

AMNF: Address Mark Not Found; ABRT: Aborted command; IDNF: Requested sector ID-field NOT found; UNC: Uncorrectable data error; DRDY: Device Ready; DF: Device Fault; DSC: Drive Seek Complete; CORR: Corrected Data; ERR: Error occurred

6. Installation Requirements

6.1 Connecting DiskOnChip IDE Pro Electrically

To connect the 44-pin DiskOnChip IDE Pro to the host, a standard 44-pin cable is required. The cable should not be longer than 18 inches, and should be aligned as follows:

- Pin 1 of the cable must be aligned with pin 1 (see Figure 2) of the header on the drive.
- Pin 44 of the cable must be aligned with pin 44 of the header on the drive.

To connect the 40-pin DiskOnChip IDE Pro to the host, a standard 40-pin cable is required. The cable should not be longer than 18 inches, and should be aligned as follows:

- Pin 1 of the cable must be aligned with pin 1 (see Figure 2) of the header on the drive.
- Pin 40 of the cable must be aligned with pin 40 of the header on the drive.

The 40-pin DiskOnChip IDE Pro has a separate connector for the power supply, to which a power supply cable can be connected. In addition, pin 20 can also be used for power supply connections. Please refer to the pin description for further details..

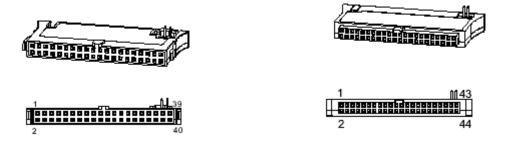


Figure 2: IDE Pro 44-pin (left) and 40-Pin (right) Connector Layouts

6.2 Installing DiskOnChip IDE Pro in a Two-Drive Configuration (Master/Slave)

If DiskOnChip IDE Pro is being installed as an additional IDE drive using the same IDE I/O port, jumper J1 must be set to indicate that this drive is a slave. The default is master with no jumpers. Table 7, Figure 3 and Figure 4 show the J1 jumper settings for DiskOnChip IDE Pro operation in Master and Slave mode.

Table 7: Jumper Settings for Master/Slave Mode

J1 Jumper Settings	Operation Mode
Open	Master
Short pins A to B or C to D	Slave

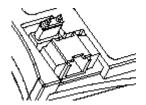


Figure 3: Slave Settings, 44-pin (left) and 40-pin (right) Connectors



Figure 4: Master Settings, 44-pin (left) and 40-pin (right) Connectors

7. Power Management

DiskOnChip IDE Pro provides automatic power saving mode. There are three operation modes:

- 1. **Active**: If the DiskOnChip IDE Pro controller receives any Command In or Soft Reset, it enters Active mode. In Active mode, DiskOnChip IDE Pro can execute any supported ATA command. The power consumption level is the highest in this mode.
- 2. **Idle**: After the DiskOnChip IDE Pro controller executes any ATA command or Soft Reset, it enters Idle mode. Power consumption is reduced as compared with Active mode.
- 3. **Sleep**: The DiskOnChip IDE Pro controller transfers from Idle into Sleep mode if there is no Command In or Soft Reset from the host for about 16ms. This time interval can be modified by firmware if necessary. In Sleep mode, the power consumption of DiskOnChip IDE Pro is at its lowest level. During Sleep mode, the system main clock is stopped. This mode can be released through a hardware reset, software reset or when any ATA command is asserted.

8. Specifications

8.1 CE and FCC Compatibility

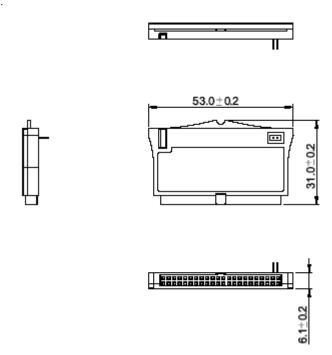
The DiskOnChip IDE Pro conforms to CE requirements and FCC standards.

8.2 Environmental Specifications

8.2.1 Temperature Ranges

Temperature Range 0° C to $+70^{\circ}$ C Storage Temperature: -55° C to $+80^{\circ}$ C

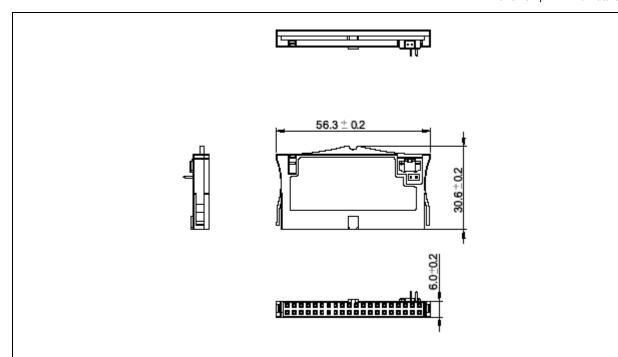
8.2.2 Humidity


Relative Humidity: 10-95%, non-condensing

8.2.3 Shock & Vibration

Reliability Tests	Test conditions	Reference Standard
Vibration	10 Hz to 500 Hz, 1G, 23 min each axis	IEC 68-2-6
Mechanical Shock	Duration: 11ms, 10G, 3 axis	IEC 68-2-27
Drop Unit	1 meter	IEC 68-2-32

8.3 Mechanical Dimensions


See Figure 5 and Figure 6.

Note: Dimensions are in mm.

Figure 5: Dimensions of 44-Pin DiskOnChip IDE Pro

Note: Dimensions are in mm.

Figure 6: Dimensions of 40-Pin DiskOnChip IDE Pro

8.4 Physical Characteristics

8.4.1 Weight

The weight of DiskOnChip IDE Pro depends on the connector type, as shown in Table 8.

Table 8: DiskOnChip IDE Pro Weight

Connector Type	Weight (g)
40-pin	11.0 ± 0.5
44-pin	9.3 ± 0.5

8.5 Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
V _{DD} -V _{SS}	DC Power Supply	-0.3	+5.5	V
V_{IN}	Input Voltage	V _{SS} -0.3	V _{DD} +0.3	V
Ta	Operating Temperature	0	+70	°C
T _{st}	Storage Temperature	-55	+80	°C

8.6 Electrical Specifications

8.6.1 DC Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
V _{IH}	Input voltage (CMOS level)	0.5xVcc	-	Vcc+0.3	V
V _{IL}	Input voltage (CMOS level)	-0.3	-	0.2xVcc	V
V _{IH}	Input voltage (Schmitt trigger)	0.7xVcc	-	Vcc+0.3	V
V _{IL}	Input voltage (Schmitt trigger)	-0.3	-	0.3xVcc	V
I _{source}	Source current	-	11.2	-	mA
I _{sin k}	Sink current	-	8.7	-	mA
ILI	Input leakage current	-	-	0.1	μΑ
ILI	Output leakage current	-	-	0.1	μA
I _{OP}	Operating current (*)	-	35	55	mA
I _{PD}	Power-down current (*)	-	-	0.18	mA
R _{RESET}	Reset resistance	-	100	-	ΚΩ

Note: Ta=0°C to +70°C, $Vcc=5.0V \pm 10$

^{*}Measured with flash memory and host interface

8.6.2 AC Characteristics

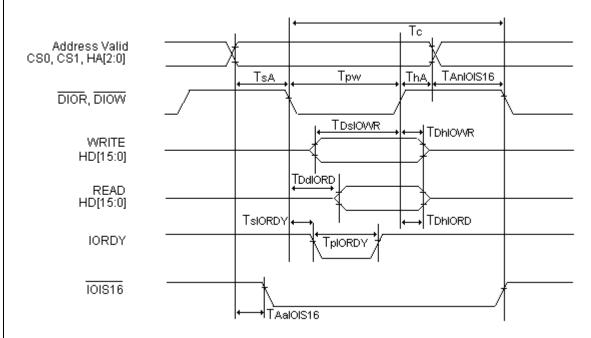


Figure 7: Timing Diagram, PIO Mode 4

Table 9: Timing Specifications, PIO Mode 4

Symbol	Parameter	Min	Max	Unit
Tc	Cycle Time	120	-	ns
TsA	Address Setup before DIOR#, DIOW#	25	-	ns
ThA	Address Hold following DIOR#, DIOW#	10	-	ns
Tpw	DIOR#, DIOW# Pulse Width	60	-	ns
TDsIOWR	Data Setup before DIOW#	20	-	ns
TDhIOWR	Data Hold following DIOW#	10	-	ns
TDdIORD	Data Delay after DIOR#	-	20	ns
TDhIORD	Data Hold following DIOR#	5	-	ns
TAalOIS16	IOIS16# Delay Falling from Address	-	15	ns
TAnIOIS16	IOIS16# Delay Rising from Address	-	15	ns
TsIORDY	IORDY Setup Time	-	35	ns
TplORDY	IORDY Pulse Time	-	1250	ns

9. Ordering Information

MD105X-DXXX

where:

MD M-Systems' DiskOnChip family

10 DiskOnChip IDE Pro

5X Vertical alignment, IDE connector

0: 40-pin IDE connector1: 44-pin IDE connector

DXXX Capacity (MB): 16, 32, 64, 128, 256

Refer to Table 10 for the combinations currently available and the associated order numbers.

Table 10: Available Combinations

Ordering Information	Capacity (MB)	Mechanical Alignment	Connector
MD1050-D16	16	Vertical	40-pin
MD1050-D32	32	Vertical	40-pin
MD1050-D64	64	Vertical	40-pin
MD1050-D128	128	Vertical	40-pin
MD1050-D256	256	Vertical	40-pin
MD1051-D16	16	Vertical	44-pin
MD1051-D32	32	Vertical	44-pin
MD1051-D64	64	Vertical	44-pin
MD1051-D128	128	Vertical	44-pin
MD1051-D256	256	Vertical	44-pin

Note: The ordering information for the IDE Pro 40-pin power cable is: DOC-IDE40-CABLE.

How to Contact Us

Website:

General Information:

Technical Information:

USA

M-Systems Inc.

8371 Central Ave, Suite A

Newark CA 94560

Phone: +1-510-494-2090

Fax: +1-510-494-5545

Taiwan

M-Systems Asia, Ltd.

Room B, 13 F, No. 133 Sec. 3

Min Sheng East Road

Taipei, Taiwan R.O.C.

Phone: +886-2-8770-6226

Fax: +886-2-8770-6295

Japan

M-Systems Japan Inc.

Arakyu Bldg., 5F

2-19-2 Nishi-Gotanda Shinagawa-ku

Tokyo 141-0031

Phone: +81-3-5437-5739 Fax: +81-3-5437-5759 http://www.m-sys.com

info@m-sys.com

techsupport@m-sys.com

China

M-Systems China Ltd.

25A International Business Commercial Bldg.

Nanhu Rd., Lou Hu District Shenzhen, China 518001 Phone: +86-755-2519-4732

Fax: +86-755-2519-4729

Europe and Israel

M-Systems Ltd. 7 Atir Yeda St.

7 Atır Yeda St. Kfar Saba 44425, Israel

Phone: +972-9-764-5000 Fax: +972-3-548-8666

© 2002 M-Systems Flash Disk Pioneers, Ltd. All rights reserved.

This document is for information use only and is subject to change without prior notice. M-Systems Flash Disk Pioneers Ltd. assumes no responsibility for any errors that may appear in this document. No part of this document may be reproduced, transmitted, transcribed, stored in a retrievable manner or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without prior written consent of M-Systems.

M-Systems products are not warranted to operate without failure. Accordingly, in any use of the Product in life support systems or other applications where failure could cause injury or loss of life, the Product should only be incorporated in systems designed with appropriate and sufficient redundancy or backup features.

Contact your local M-Systems sales office or distributor, or visit our website at www.m-sys.com to obtain the latest specifications before placing your order.

DiskOnChip®, DiskOnChip Millennium® and TrueFFS® are registered trademarks of M-Systems. DiskOnKey™, FFD™ and SuperMAP™ are trademarks of M-Systems. Other product names mentioned in this document may be trademarks or registered trademarks of their respective owners and are hereby acknowledged.