
# A11 – 6U VMEbus PowerPC Workstation



User Manual

Board-Level Computers for Industrial Applications



## A11 – 6U VMEbus PowerPC Workstation

The A11 is an industrial PowerPC workstation with scalable performance delivering up to 1160 MIPS. When equipped with the 603e, the A11 delivers excellent price-performance for cost-sensitive applications with a need for high computing power. The board can also be ordered with the 740 PowerPC CPU family for applications where maximum performance is required.

The A11 is a complete state-of-the-art single-board computer needing only one slot on the VMEbus. It offers fast Ethernet and Ultra2 SCSI controllers, a large amount of DRAM, Flash and CompactFlash memory. Four serial interfaces are provided two of them default as COM3 and COM4, and the others as COM1 and COM2 directly at the front panel or via a transition module.

The A11 offers computer I/O flexibility by providing two slots for PC•MIP mezzanine modules, while still providing full front-panel connectivity. Both Type I and Type II PC•MIP modules can be used to equip the A11 with a full range of workstation and industrial I/O options. Graphics for VGA, additional Ethernet or SCSI for server or redundancy purposes, fieldbus interfaces for remote I/O control, and many others are available, depending on the application.

The A11 CPU board is compatible with Motorola's PowerPC computer boards (MVME1600 and MVME2600) and offers I/O compatibility with many existing P2 transition modules from Motorola (MVME712M) and other vendors.

### **Technical Data**

#### CPU

- Motorola PowerPC
  - 603e / 100..300MHz, up to 423 MIPS @ 300MHz
  - 740 / 200..500MHz, up to 928 MIPS @ 500MHz

#### Memory

- Level 1 Cache
  - 603e: 16KB instruction/16KB data
  - 740: 32KB instruction/32KB data
- Level 2 Cache
  - Up to 512KB
- SDRAM soldered 32MB
  - 64-bit data bus
  - 66MHz
  - No parity checking
- SO-DIMM slot up to 64MB
- Flash up to 16MB
  - 64-bit data bus
  - Two banks
- CompactFlash card interface for Flash ATA via on-board IDE

#### Local PCI Bus

- MPC106 Host-to-PCI bridge
- PCI Spec. 2.1 compliant
- 32 bit data bus, 33MHz
- One local PCI expansion slot, e.g. for carrier boards with PMC or IP modules

#### VMEbus

- VMEbus Spec. IEEE-1014-87 compatible
- VME64x extension except A64
- 3-row or 5-row connectors
- Tundra Universe II chip
- Up to 70MB/s transfer rate
- A16, A24, A32 master/slave
- D08(EO), D16, D32, D64
- BLT, ADOH, RMW, LOCK
- 7-level interrupter
- 7-level interrupt handler
- System controller

#### PC-MIP Mezzanine Extension

- Two PC-MIPs Type I/II
- On local PCI bus via DEC21150 PCI-to-PCI bridge
- Compliant with PC-MIP specification

#### Interfaces

- COM1/2 with RS232 interface at 9-pin micro D-Sub connector at front panel or via P2 I/O
- COM3/4 sync./async. UART Z85230 via P2 I/O
- Standard floppy disk controller interface using on-board connector
- Ultra2 SCSI with LVD interface on front panel or 16/8-bit interface at P2 I/O
- Full-duplex 10/100Mbits/s PCI Ethernet controller with 100Base-TX/10Base-T interface at front panel and 10Base-5 interface via P2 I/O
- Keyboard and mouse with 6-pin PS/2 connector at front panel
- Multimode parallel port (ECP, EPP, PS/2, SPP) via P2 I/O
- IDE interface on-board for AD35 CompactFlash adapter

#### Miscellaneous

- Real-time clock with 8Kx8 NVRAM
- 6 programmable 16-bit timers Z8536
- Hardware monitor with alarm function for
  - On-board temperature control
  - Voltage control
- Reset/abort button at front panel
- Four user LEDs at front panel
- Four control LEDs at front panel
- Hex switch for user settings
- Watchdog

#### Electrical Specifications

- Supply voltage/power consumption: +5V (4.85V..5.25V), 5.5A max.
- MTBF: 66,000h @ 50°C

#### Mechanical Specifications

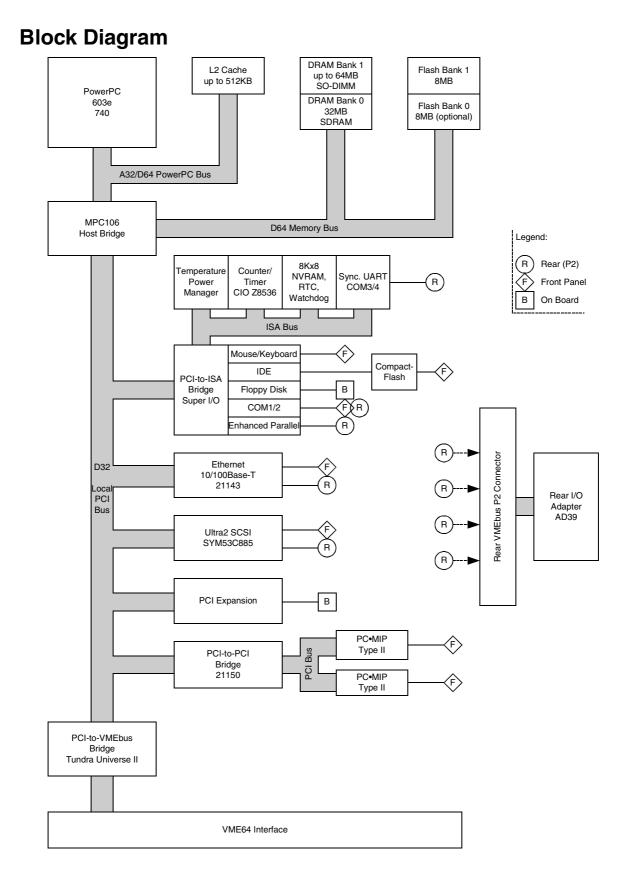
- Dimensions: standard double Eurocard, 233.3mm x 160mm
- Weight: 384g

#### **Environmental Specifications**

- Temperature range (operation):
  - 0..+60°C
  - Industrial temperature range on request
  - Airflow: min. 10m<sup>3</sup>/h
- Temperature range (storage): -40..+85°C
- Relative humidity (operation): max. 95% non-condensing
- Relative humidity (storage): max. 95% non-condensing
- Altitude: -300m to + 3,000m
- Shock: 15g/0.33ms, 6g/6ms
- Vibration: 1g/5..2,000Hz

#### Safety

• PCB manufactured with a flammability rating of 94V-0 by UL recognized manufacturers


#### ЕМС

 Tested according to EN 55022 / 1999-05 (radio disturbance) and EN 55024 / 1999-05 (immunity) with regard to CE conformity

#### Software Support

- MENMON
- VxWorks
- QNX
- OS-9

. . . . . . . . . . . . . . . . . . . .



. . . . . . . . . . .

- - - - - -

- - - -

## **Product Safety**



#### Lithium Battery

This board contains a lithium battery. There is a danger of explosion if the battery is incorrectly replaced!

Replace only with the same or equivalent type.

Dispose of used batteries according to the manufacturer's instructions.



### Fuses

This board contains fuses. If you need to replace a fuse, make sure you adhere to the following types and ratings:

| Component | <b>Current Rating</b> | Туре | Size | Function               |
|-----------|-----------------------|------|------|------------------------|
| S1        | 1.5A                  | Fast | 1206 | SCSI Termination Power |
| S2        | 1.5A                  | Fast | 1206 | Keyboard interface     |
| S3        | 1.5A                  | Fast | 1206 | IDE interface          |
| S4        | 1.5A                  | Fast | 1206 | Floppy disk interface  |
| S5        | 1.5A                  | Fast | 1206 | Ethernet P2 interface  |

For component locations, see Figure 21, Component Plan of A11 Hardware Revision 03 — Bottom Side, on page 106.



### **Electrostatic Discharge (ESD)**

Computer boards and components contain electrostatic sensitive devices. Electrostatic discharge (ESD) can damage components. To protect the board and other components against damage from static electricity, you should follow some precautions whenever you work on your computer.

- Power down and unplug your computer system when working on the inside.
- Hold components by the edges and try not to touch the IC chips, leads, or circuitry.
- Use a grounded wrist strap before handling computer components.
- Place components on a grounded antistatic pad or on the bag that came with the component whenever the components are separated from the system.
- Store the board only in its original ESD-protected packaging. Retain the original packaging in case you need to return the board to MEN for repair.

## About this Document

This user manual describes the hardware functions of the board, connection of peripheral devices and integration into a system. It also provides additional information for special applications and configurations of the board.

The manual does not include detailed information on individual components (data sheets etc.). A list of literature is given in the appendix.

| History |
|---------|
|---------|

| Edition | Description                        | Technical Content       | Date of Issue |
|---------|------------------------------------|-------------------------|---------------|
| E1      | First edition                      | J. Steinert, U. Franke  | 1999-08-20    |
| E2      | Second edition, MENMON version 2.x | J. Steinert, Klaus Popp | 2000-02-14    |
| E3      | Third edition, MENMON version 3.x  | J. Steinert, Klaus Popp | 2001-03-09    |
| E4      | Fourth edition                     | H. Schubert, U. Franke  | 2004-04-20    |

#### Conventions



This sign marks important notes or warnings concerning proper functionality of the product described in this document. You should read them in any case.

Folder and file names are printed in *italics*.

italics bold

**Bold** type is used for emphasis.

hyperlink

Hyperlinks are printed in blue color.

The globe will show you where hyperlinks lead directly to the Internet, so you can look for the latest information online.

0xFF Hexadecimal numbers are preceded by "0x", which is the usual C-language convention, and are printed in a monospace type, e.g. 0x00FFFF.

IRQ# Signal names followed by "#" or preceded by a slash ("/") indicate that this signal is/IRQ either active low or that it becomes active at a falling edge.

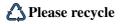
in/out Signal directions in signal mnemonics tables generally refer to the corresponding board or component, "in" meaning "to the board or component", "out" meaning "coming from it".

Vertical lines on the outer margin signal technical changes to the previous edition of the document.

#### **Copyright Information**

MEN reserves the right to make changes without further notice to any products herein. MEN makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does MEN assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages.

"Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.


MEN does not convey any license under its patent rights nor the rights of others.

MEN products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the MEN product could create a situation where personal injury or death may occur. Should Buyer purchase or use MEN products for any such unintended or unauthorized application, Buyer shall indemnify and hold MEN and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that MEN was negligent regarding the design or manufacture of the part.

All brand or product names are trademarks or registered trademarks of their respective holders.

Information in this document has been carefully checked and is believed to be accurate as of the date of publication; however, no responsibility is assumed for inaccuracies. MEN will not be liable for any consequential or incidental damages arising from reliance on the accuracy of this document. The information contained herein is subject to change without notice.

Copyright © 2004 MEN Mikro Elektronik GmbH. All rights reserved.



#### Germany

MEN Mikro Elektronik GmbH Neuwieder Straße 5-7 90411 Nuremberg Phone +49-911-99 33 5-0 Fax +49-911-99 33 5-901 E-mail info@men.de www.men.de

#### France

MEN Mikro Elektronik SA 18, rue René Cassin ZA de la Châtelaine 74240 Gaillard Phone +33 (0) 450-955-312 Fax +33 (0) 450-955-211 E-mail info@men-france.fr www.men-france.fr

#### UK

MEN Micro Ltd Whitehall, 75 School Lane Hartford, Northwich Cheshire UK, CW8 1PF Phone +44 (0) 1477-549-185 Fax +44 (0) 1477-549-178 E-mail info@menmicro.co.uk

#### USA

MEN Micro, Inc. 3740 North Josey Lane, Suite 203 Carrollton, TX 75007 Phone 972-939-2675 Fax 972-939-0055 E-mail sales@menmicro.com www.menmicro.com

# Contents

- - - - -

| 1 | Getting | g Started | l 16                                                           |
|---|---------|-----------|----------------------------------------------------------------|
|   | 1.1     | Map of    | the Board                                                      |
|   | 1.2     | Configu   | rring the Hardware 17                                          |
|   | 1.3     | Integrat  | ing the Board into a System 18                                 |
|   | 1.4     | Installir | ng Operating System Software 19                                |
| 2 | Functio | onal Des  | cription                                                       |
|   | 2.1     | Power S   | Supply                                                         |
|   | 2.2     | Clock S   | upply                                                          |
|   | 2.3     | PowerP    | C CPU                                                          |
|   |         | 2.3.1     | General                                                        |
|   |         | 2.3.2     | Heat Sink                                                      |
|   | 2.4     | Bus Str   | ucture                                                         |
|   |         | 2.4.1     | Host-to-PCI Bridge 22                                          |
|   |         | 2.4.2     | Local PCI Bus 22                                               |
|   |         | 2.4.3     | PCI-to-ISA Bridge 22                                           |
|   |         | 2.4.4     | PCI-to-PCI Bridge. 22                                          |
|   |         | 2.4.5     | PCI-to-VMEbus Bridge 22                                        |
|   | 2.5     |           | y                                                              |
|   |         | 2.5.1     | Level 2 Cache                                                  |
|   |         | 2.5.2     | SDRAM                                                          |
|   |         | 2.5.3     | Flash                                                          |
|   |         | 2.5.4     | EEPROM                                                         |
|   | 2.6     |           | t Interface                                                    |
|   |         | 2.6.1     | Connection                                                     |
|   |         | 2.6.2     | General                                                        |
|   |         | 2.6.3     | 10Base-5                                                       |
|   |         | 2.6.4     | 10Base-T                                                       |
|   | 2.7     | 2.6.5     | 100Base-T                                                      |
|   | 2.7     | 2.7.1     | terface                                                        |
|   |         | 2.7.1     | General                                                        |
|   |         | 2.7.2     | SCSI Termination on A11                                        |
|   | 2.8     |           | Scsr remination on ATT         52           pansion         33 |
|   | 2.0     |           | P Slots                                                        |
|   | 2.7     | 2.9.1     | Installing PC•MIPs                                             |
|   |         | 2.9.1     | PC•MIP Connectors                                              |
|   | 2.10    |           | ctFlash                                                        |
|   | 2.10    | 2.10.1    | Installing CompactFlash                                        |
|   |         | 2.10.2    | Supported CompactFlash Cards                                   |
|   | 2.11    |           | rd/Mouse                                                       |
|   |         |           | orts COM1/COM2                                                 |
|   | 2.12    | 2.12.1    | Connection                                                     |
|   |         |           |                                                                |

\_\_\_\_

|   | 2.13                           | Asynchr  | onous/Synchronous Serial Ports COM3/COM4   | 40 |  |  |
|---|--------------------------------|----------|--------------------------------------------|----|--|--|
|   | 2.14                           | Enhance  | ed Parallel Port.                          | 41 |  |  |
|   | 2.15 Floppy Disk Controller 42 |          |                                            |    |  |  |
|   | 2.16                           | Hardwar  | re Monitor                                 | 44 |  |  |
|   | 2.17                           | Timekee  | eper, NVRAM and Watchdog                   | 44 |  |  |
|   | 2.18                           | Counter  | /Timer CIO Z8536                           | 44 |  |  |
|   | 2.19                           | Reset/A  | bort Buttons and User/Status LEDs          | 45 |  |  |
|   |                                | 2.19.1   | Reset/Abort Buttons                        | 45 |  |  |
|   |                                | 2.19.2   | User/Status LEDs                           | 45 |  |  |
|   | 2.20                           | User-De  | fined Hex Switch                           | 46 |  |  |
|   | 2.21                           | VMEbu    | s Interface                                | 47 |  |  |
|   |                                | 2.21.1   | Implementation on the Board                | 47 |  |  |
|   |                                | 2.21.2   | Connection                                 | 49 |  |  |
|   | 2.22                           | IEEE 11  | 49.1 (JTAG)/COP Test Interface             | 55 |  |  |
|   |                                | 2.22.1   | Configuring the IEEE 1149.1 Test Interface | 56 |  |  |
|   |                                | 2.22.2   | Configuring the COP Test Interface         | 56 |  |  |
| 3 | MENN                           | ION      |                                            | 57 |  |  |
|   | 3.1                            |          |                                            |    |  |  |
|   | 3.2                            | Console  |                                            | 57 |  |  |
|   | 3.3                            |          | ENMON Memory Map                           |    |  |  |
|   | 3.4                            | MENM     | ON Start-up                                | 59 |  |  |
|   |                                | 3.4.1    | User LEDs.                                 | 59 |  |  |
|   |                                | 3.4.2    | Boot Sequence.                             | 59 |  |  |
|   |                                | 3.4.3    | Configuring the MENMON Start-up Procedure  | 59 |  |  |
|   |                                | 3.4.4    | Self Tests                                 | 60 |  |  |
|   | 3.5                            | MENM     | ON Boot Methods for Client Programs        | 62 |  |  |
|   |                                | 3.5.1    | MENMON BIOS Devices.                       | 62 |  |  |
|   |                                | 3.5.2    | Disk Boot                                  | 64 |  |  |
|   |                                | 3.5.3    | Network Boot                               | 70 |  |  |
|   |                                | 3.5.4    | MENMON Tape Boot                           | 71 |  |  |
|   | 3.6                            | Updating | g Flash Devices                            | 72 |  |  |
|   |                                | 3.6.1    | Download via Serial Interface.             | 72 |  |  |
|   |                                | 3.6.2    | Performing the Download                    | 73 |  |  |
|   |                                | 3.6.3    | - F                                        | 74 |  |  |
|   | 3.7                            | MENM     | ON User Interface                          | 75 |  |  |
|   |                                | 3.7.1    | Command Line Editing                       | 75 |  |  |
|   |                                | 3.7.2    | <b>8 .</b>                                 | 75 |  |  |
|   |                                | 3.7.3    |                                            | 76 |  |  |
|   | 3.8                            |          | 1                                          | 78 |  |  |
|   |                                | 3.8.1    |                                            | 78 |  |  |
|   |                                | 3.8.2    | PCI Auto-Configuration                     |    |  |  |
|   |                                | 3.8.3    |                                            | 80 |  |  |
|   |                                | 3.8.4    |                                            | 81 |  |  |
|   |                                | 3.8.5    | 6                                          | 81 |  |  |
|   |                                | 3.8.6    | Hex Switch                                 | 81 |  |  |
|   |                                |          |                                            |    |  |  |

- - - - -

|      | 3.9  | MENM       | ON System Calls                                |
|------|------|------------|------------------------------------------------|
|      |      | 3.9.1      | Invoking System Calls                          |
|      |      | 3.9.2      | System Calls                                   |
|      | 3.10 | VxWork     | s Bootline                                     |
|      |      | 3.10.1     | Additional MENMON Parameters 89                |
| 4 Or | gani | ization of | f the Board                                    |
|      | 4.1  | Memory     | y Mappings                                     |
|      |      | 4.1.1      | Processor View of the Memory Map 90            |
|      |      | 4.1.2      | PCI Configuration Space Map (Primary Bus) 91   |
|      |      | 4.1.3      | PCI Configuration Space Map (Secondary Bus) 91 |
|      |      | 4.1.4      | PCI/ISA I/O Space Memory Map 92                |
|      |      | 4.1.5      | VMEbus Memory Map 93                           |
|      | 4.2  | Interrup   | t Handling                                     |
|      |      | 4.2.1      | Nonmaskable Interrupts                         |
|      |      | 4.2.2      | Maskable Interrupts                            |
|      | 4.3  | Implem     | entation of SYM53C895 SCSI Controller          |
|      | 4.4  | Implem     | entation of M1543 PCI-to-ISA Bridge            |
|      | 4.5  | Z8536 (    | CIO                                            |
| 5 Ap | pen  | dix        |                                                |
|      | 5.1  | Literatu   | re and WWW Resources 100                       |
|      |      | 5.1.1      | Bridges 100                                    |
|      |      | 5.1.2      | VMEbus 100                                     |
|      |      | 5.1.3      | PCI 100                                        |
|      |      | 5.1.4      | Ethernet                                       |
|      |      | 5.1.5      | SCSI 101                                       |
|      |      | 5.1.6      | Parallel Port 101                              |
|      |      | 5.1.7      | PC•MIP                                         |
|      |      | 5.1.8      | Miscellaneous 102                              |
|      | 5.2  | Board R    | Revisions 102                                  |
|      | 5.3  | Compor     | nent Plans 105                                 |

### Figures

. . . . . .

. . . . . . . . . . .

-

#### Tables

| Table 1.  | Terminal Lines of the 9-pin micro D-Sub RS232 Plug Connector       |
|-----------|--------------------------------------------------------------------|
|           | (COM1)                                                             |
| Table 2.  | PowerPC Compare Chart 21                                           |
| Table 3.  | Pin Assignment of the 8-pin RJ45 Ethernet 10Base-T/100Base-T       |
|           | Connector                                                          |
| Table 4.  | Signal Mnemonics of the Ethernet 10Base-T/100Base-T Connector . 25 |
| Table 5.  | Signal Mnemonics for SCSI Interface 28                             |
| Table 6.  | Pin Assignment of the 68-pin VHDCI SCSI Connector 29               |
| Table 7.  | Overview of SCSI Types, Maximum Bus Widths, Throughput and Line    |
|           | Lengths                                                            |
| Table 8.  | SCSI Termination on A11 32                                         |
| Table 9.  | Pin Assignment of the 114-pin PCI Expansion Connector 34           |
|           | Pin Assignment of the 6-Pin Mini DIN Keyboard/Mouse Connector . 38 |
|           | Signal Mnemonics for Keyboard/Mouse Interface                      |
| Table 12. | Pin Assignment of the 9-pin micro D-Sub COM1/COM2 Plug Connectors  |
|           | (RS232)                                                            |
|           | Signal Mnemonics for RS232 Serial Ports COM1/COM2 39               |
|           | Configuring Clock Signals for COM4 40                              |
|           | Pin Assignment of 26-pin ZIF Floppy Disk Drive Connector 42        |
|           | Signal Mnemonics for Floppy Disk Drive Connector 43                |
|           | Hardware Monitor Channels 44                                       |
|           | User/Status LED Functions 45                                       |
|           | Pin Assignment of the 5/3-Row, 96/160-Pin VMEbus Connector P1. 50  |
|           | Pin Assignment of the 5/3-Row, 96/160-Pin VMEbus Connector P2. 51  |
| Table 21. | Signal Mnemonics of VMEbus Rear I/O Connector P2 52                |
|           | Pin Assignment of the 16-pin IEEE 1149.1 Test Connector 55         |
|           | MENMON — Assignment for A11 Controller Devices                     |
|           | MENMON — Download Destination Devices                              |
|           | MENMON — Flash Sectors for 8MB 73                                  |
| Table 26. | MENMON — Flash Sectors for 16MB 73                                 |
|           | MENMON — Command Overview                                          |
|           | MENMON — Address Map for A11 as a VMEbus Master                    |
| Table 29. | MENMON — Hex-Switch Settings                                       |
| Table 30. | MENMON — System Calls — BRD_ID Fields 83                           |
| Table 31. | MENMON — System Calls — RTC_RD Buffer Data 85                      |
| Table 32. | MENMON — System Calls — DSK_RD Fields                              |
| Table 33. | MENMON — VxWorks Bootline — List of Parameters and their           |
|           | Usage                                                              |
| Table 34. | MENMON - Common Parameters Passed by All MENMONs 89                |
|           | Address Map — Processor View                                       |
|           | PCI Configuration Space Map (Primary Bus) 91                       |
| Table 37. | PCI Configuration Space Map (Secondary Bus) 91                     |

\_\_\_\_

#### -----

| Table 38. | PCI/ISA I/O Space Memory Map                                 | 2 |
|-----------|--------------------------------------------------------------|---|
| Table 39. | Possible VMEbus Memory Map                                   | 3 |
| Table 40. | ISA Interrupt Assignments                                    | 5 |
| Table 41. | Steerable Interrupt Assignments                              | 5 |
| Table 42. | PCI Interrupt Assignments                                    | 5 |
| Table 43. | General-Purpose Pins of SYM53C895 SCSI Controller 90         | 6 |
| Table 44. | M1543 General Purpose Input (GPI) Pin Assignments            | 7 |
| Table 45. | M1543 General Purpose Input/Output (GPIO) Pin Assignments 97 | 7 |
| Table 46. | M1543 General Purpose Output Pin Assignments                 | 8 |
| Table 47. | M1543 GPI Assignment for Hex Switch                          | 8 |
| Table 48. | Pin Assignment of the Z8536 Ports                            | 9 |
| Table 49. | Table of Hardware Revisions    102                           | 2 |

\_\_\_\_

# 1 Getting Started

This chapter will give an overview of the A11 and some hints for first installation in a VMEbus system as a "check list".

#### 1.1 Map of the Board

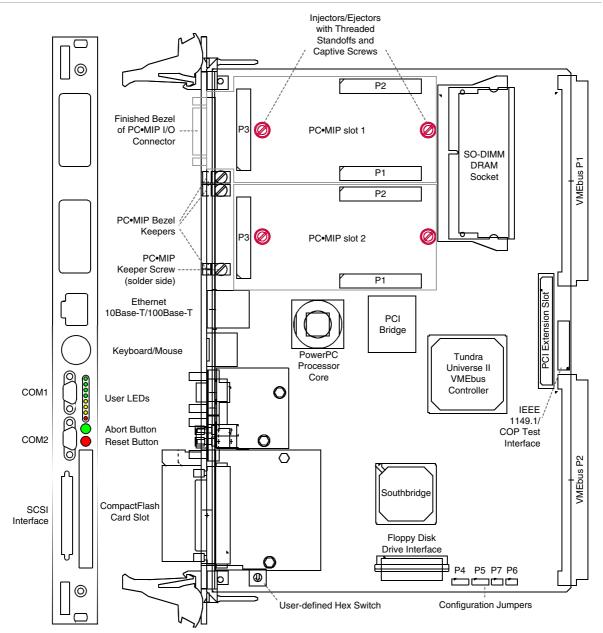



Figure 1. Map of the Board - Front Panel and Top View

#### 1.2 Configuring the Hardware

You should check your hardware requirements before installing the board in a system, since most modifications are difficult or even impossible to do when the board is mounted in an enclosure.

The following check list will give an overview on what you might want to configure.

☑ DRAM SO-DIMM modules

The A11 is shipped with 32MB DRAM on board. You should check on your main memory needs and install a suitable SO-DIMM module if necessary.

Refer to Chapter 2.5.2 SDRAM on page 23 for a detailed installation description and hints on supported SO-DIMM modules.

☑ CompactFlash

Refer to Chapter 2.10 CompactFlash on page 37 for a detailed installation description and hints on supported CompactFlash cards.

☑ PC•MIPs

Refer to Chapter 2.9.1 Installing PC•MIPs on page 35 for a detailed installation description. Also, observe the installation recommendations given in the M-Module's user manual.

☑ Rear I/O adapter

Refer to Chapter 2.21.2.3 Connecting a Rear I/O Adapter to P2 on page 54 for hints on connection of a rear I/O adapter.

☑ PCI Expansion



*MEN Mikro Elektronik GmbH* 20A011-00 E4 - 2004-04-20

#### 1.3 Integrating the Board into a System

The A11 is a complex board and setting it up requires experience. You can use the following check list when installing the CPU board in a VMEbus system for the first time and with minimum configuration.



The board is completely trimmed on delivery. Perform the following procedure without a PC•MIP installed!

- $\blacksquare$  Power-down the system.
- $\blacksquare$  Remove all boards from the VMEbus system.
- $\square$  Install the A11 in slot 1 of the system.
- ☑ Connect a terminal to the standard RS232 interface COM1 (9-pin micro D-Sub connector) by wiring the following lines to the connector:

**Table 1.** Terminal Lines of the 9-pin micro D-Sub RS232 Plug Connector (COM1)

|          | 6 | - | 1 | -   |
|----------|---|---|---|-----|
| 6 ( ) 1  | 7 | - | 2 | RXD |
| <u>Š</u> | 8 | - | 3 | TXD |
| 9 9 5    | 9 | - | 4 | -   |
|          |   |   | 5 | GND |

- $\square$  Set your terminal to the following protocol:
  - 9600 baud data transmission rate
  - 8 data bits
  - 1 stop bit
  - No parity

Note: If you need to restore these default settings on the A11, do the following:

- $\square$  Press the Reset and Abort buttons at once.
- $\blacksquare$  Release the Reset button.
- ☑ Hold the Abort button until the green front-panel LEDs light up in succession, then release the button.
- $\square$  Press the Reset button again.
- $\square$  Power-up the system.

 $\square$  The terminal displays the following message:

```
\_ Secondary MenMon for the A11 Version 3.0 _{	extsf{-}}
           (c) 1998 - 2000 MEN mikro elektronik GmbH Nuernberg
            Parts of this code are based on Motorola's Dink32
                   Created Feb 11 2000
                                            13:42:19
                                                    CPU: MPC740
     HW Revision: 01.01.00
   Serial Number: 0
                                              CPU Clock: 299 MHz
   Board Version: 00
                                            Onboard RAM: 32 MB
                                            DIMM Module: 0 MB
Init VME Controller.. (Slot 1 function enabled)
press 'ESC' to setup/MENMON
Selftest running ...
CHECKSUM
                      ==> 0K
*** Can't jump to bootstrapper. BS address in EEPROM invalid!
MenMon>
```

- ☑ Now you can use the MENMON debugger (see detailed description in Chapter 3 MENMON on page 57).
- $\blacksquare$  Observe the installation instructions for the respective software.

#### 1.4 Installing Operating System Software

The A11 supports VxWorks, OS-9, LynxOS and QNX.



You can find any software available on MEN's website.

By standard, no operating system is installed on the board. Please refer to MEN's operating system installation documentation on how to install the software!

# 2 Functional Description

The following describes the individual functions of the A11 and their configuration on the board. There is no detailed description of the individual controller chips and the CPUs. They can be obtained from the data sheets or data books of the semiconductor manufacturer concerned (Chapter 5.1 Literature and WWW Resources on page 100).

#### 2.1 Power Supply

The A11 is supplied with +5V via the VMEbus. However, PC•MIPs, PCI expansion cards or rear I/O adapters may need +12V.

Two power supplies generate different supply voltages on the board: One is used for the PowerPC core voltage, which is factory-set for the corresponding processor. The other converter is fixed to 3.3V. It supplies the PC•MIP PCI bus and the host memory bus devices.

#### 2.2 Clock Supply

The clock supply generates all clocks for the on-board devices (PowerPC, SDRAM, L2 Cache, host bridge, PCI bus devices). The clock frequency is factory-set for the corresponding processor.

The local PCI clock is limited to 33MHz because of the Tundra Universe II VMEbus chip.

#### 2.3 PowerPC CPU

The A11 supports the principle of scalable CPU performance. Depending on the application, the user can choose between 188 MIPS and 629 MIPS of computing performance.

The board is prepared for different PowerPC<sup>TM</sup> CPUs. All CPUs are pin- and buscompatible. The CPU is not removable.

#### 2.3.1 General

The PowerPC architecture, developed jointly by Motorola, IBM, and Apple Computer, is based on the POWER architecture implemented by the RS/6000<sup>TM</sup> family of computers. The PowerPC architecture takes advantage of recent technological advances in such areas as process technology, compiler design, and RISC microprocessor design to provide software compatibility across a diverse family of implementations, primarily single-chip microprocessors, intended for a wide range of systems.

To provide a single architecture for such a broad assortment of processor environments, the PowerPC architecture is both flexible and scalable.

 Table 2. PowerPC Compare Chart

| PowerPC           | Core<br>Voltage | Core<br>Frequencies | FPU | MMU | INT | Instruction/<br>Data Cache | Max. Power | Max.<br>Perfomance |
|-------------------|-----------------|---------------------|-----|-----|-----|----------------------------|------------|--------------------|
| 603e <sup>1</sup> | 2.5V            | 166300 MHz          | 1   | 2   | 1   | 16/16 KB                   | 6.0 W      | 423 MIPS           |
| 740 <sup>1</sup>  | 2.6V            | 200/233/266 MHz     | 1   | 2   | 2   | 32/32 KB                   | 7/7.9 W    | 488 MIPS           |
| 740               | 1.9V            | 300 MHz             | 1   | 2   | 2   | 32/32 KB                   | 4.8 W      | 550 MIPS           |
| 740               | 2.0V            | 500 MHz             | 1   | 2   | 2   | 32/32 KB                   | 8 W        | 928 MIPS           |

<sup>1</sup> Version for extended temperature range -40°C..+85°C available



Refer to MEN's website for supported PowerPC CPU types.

#### 2.3.2 Heat Sink

A heat sink is provided to meet thermal requirements.



Note: MEN gives no warranty on functionality and reliability of the A11 if you use any other processor or heat sink than that supplied by MEN. Please contact either MEN directly or your local MEN sales office!

T

### 2.4 Bus Structure

#### 2.4.1 Host-to-PCI Bridge

The MPC106 is used as host bridge for the PowerPC processor. All transactions of the PowerPC to memory or to the PCI bus are controlled by the host bridge.

The A11 supports concurrent transfers on PowerPC and PCI buses.

The PCI interface is PCI bus Rev. 2.1 compliant and supports all bus commands and transactions. Master and target operations are possible. Big- or little-endian operation is selectable.

#### 2.4.2 Local PCI Bus

The local PCI bus is controlled by the MPC106 host-to-PCI bridge. It runs at 33MHz. The I/O voltage is fixed to 5V. The data width is 32 bits.

Major functional elements of the A11, such as Ethernet, SCSI, PCI expansion and PC•MIP extension, are connected on the local PCI bus.

#### 2.4.3 PCI-to-ISA Bridge

The M1543 is the "southbridge" between PCI and ISA bus, providing full PCI and ISA compatible functions. The M1543 provides integrated Super I/O (floppy disk controller, 2 serial ports/1 parallel port), system peripherals (ISP) (2 82C59 and serial interrupt, 1 82C54), advanced features (type F and distributed DMA) in the DMA controller (2 82C37), PS2 keyboard/mouse controller, 2-channel dedicated IDE master controller with Ultra-33 specification and System Management Bus (SMB).

M1543 also provides a PCI-to-ISA IRQ routing table, and level-to-edge trigger transfer. The chip provides 2 extra IRQ lines and 1 programmable chip. The interrupt lines can be routed to any of the available ISA interrupts.

#### 2.4.4 PCI-to-PCI Bridge

The A11 has a secondary PCI bus for PC•MIP mezzanines. It is controlled by a 21150 device and has a signaling voltage of 3.3V.

#### 2.4.5 PCI-to-VMEbus Bridge

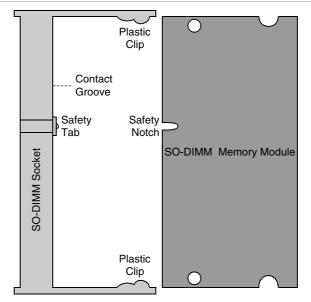
The Tundra Universe II chip is the bridge from the local board functions to the VMEbus. The device decouples the transfers between the PCI bus and VMEbus with the help of transmit and receive FIFOs for both sides.

#### 2.5 Memory

#### 2.5.1 Level 2 Cache

For high performance the board has 512KB secondary level cache. The cache is controlled by the MPC106 host bridge.

#### 2.5.2 SDRAM


Two SDRAM banks are implemented on A11. Bank 0 with 32MB is permanently mounted.

Bank 1 is connected to a 144-pin SO-DIMM connector for easy extension. The MPC106 can handle SDRAM devices with up to 64Mbit.

#### 2.5.2.1 Installing SO-DIMM DRAM

The A11 is normally shipped without any DRAM SO-DIMM module installed. To install a SO-DIMM module, please stick to the following procedure.

#### Figure 2. SO-DIMM DRAM Installation



The DRAM module will only fit as shown above because of a safety tab on the SO-DIMM socket which requires a notch in the SO-DIMM module.



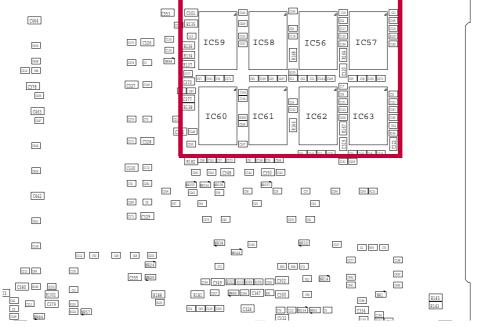
- ☑ Power down the system before installing a SO-DIMM module to avoid damage of the A11!
- $\square$  Place the memory module into the socket at a 45° angle and make sure that the safety tab and notch are aligned.
- $\blacksquare$  Carefully push the memory module into the contact groove of the socket.
- $\blacksquare$  Press the memory module down until it clicks into place.
- $\blacksquare$  The plastic clips of the socket now hold the memory module in place.
- $\square$  To release the module, squeeze both plastic clips outwards and carefully pull the module out of the socket.

#### 2.5.2.2 Supported SO-DIMM Modules

You can install standard SO-DIMM modules with SDRAM components. See MEN's website for memory modules available from MEN.



Note: MEN gives no warranty on functionality and reliability of the A11 if you use any other module than that qualified and/or supplied by MEN. Please contact either MEN directly or your local MEN sales office.


#### 2.5.3 Flash

The A11 has two on-board Flash banks. They are controlled by the MPC106 host bridge and can accommodate a maximum of 8MB each. The data bus is 64 bits wide. The devices are organized in 1Mx16bit.

Bank 1 contains the boot software for MENMON/OS bootstrapper and application software. The occupied sectors are software-protected against illegal write transactions.

Bank 0 is available for user applications. It is prepared for on-board programming.





#### 2.5.4 EEPROM

The A11 has a 4-kbit serial EEPROM for factory data.

#### 2.6 Ethernet Interface

The Ethernet interface of the A11 supports both 10Mbit/s and 100Mbit/s as well as full-duplex operation and autonegotiation.



Note: The unique Ethernet address is set at the factory and should not be changed. Any attempt to change this address may create node or bus contention and thereby render the board inoperable. A label on the bottom side of the A11 gives the set Ethernet address.

#### 2.6.1 Connection

A standard RJ45 connector is available at the front panel for connection to 10Base-T or 100Base-TX network environments. It is not necessary to switch between the two configurations!

The pin assignment corresponds to the Ethernet specification IEEE802.3.

Connector types:

- Modular 8/8-pin mounting jack according to FCC68
- Mating connector: Modular 8/8-pin plug according to FCC68

**Table 3.** Pin Assignment of the 8-pin RJ45 Ethernet 10Base-T/100Base-T

 Connector

|  | 1 | TX+ |
|--|---|-----|
|  | 2 | TX- |
|  | 3 | RX+ |
|  | 4 | -   |
|  | 5 | -   |
|  | 6 | RX- |
|  | 7 | -   |
|  | 8 | -   |

Table 4. Signal Mnemonics of the Ethernet 10Base-T/100Base-T Connector

| Signal | Direction | Function                                 |  |  |
|--------|-----------|------------------------------------------|--|--|
| RX+/-  | in        | Differential pair of receive data lines  |  |  |
| TX+/-  | out       | Differential pair of transmit data lines |  |  |

The A11 also features a 10Base-5 interface for rear I/O via a rear I/O adapter at VMEbus P2. (See also Chapter 2.21.2.3 Connecting a Rear I/O Adapter to P2 on page 54 and MEN's website for available adapters.)

#### 2.6.2 General

Ethernet is a local-area network (LAN) protocol developed by Xerox Corporation in cooperation with DEC and Intel in 1976. Ethernet uses a bus or star topology and supports data transfer rates of 100Mbps and more. The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies the physical and lower software layers. Ethernet uses the CSMA/CD access method to handle simultaneous demands. It is one of the most widely implemented LAN standards.

Ethernet networks provide high-speed data exchange in areas that require economical connection to a local communication medium carrying bursty traffic at high-peak data rates.

A classic Ethernet system consists of a backbone cable and connecting hardware (e.g. transceivers), which links the controllers of the individual stations via transceiver (transmitter-receiver) cables to this backbone cable and thus permits communication between the stations.

#### 2.6.3 10Base-5

The yellow 10Base-5 thick-wire AUI line is the original type of Ethernet cable. The simplest configuration is to connect the AUI connector of each station to this yellow cable using a transceiver line and a transceiver. An Ethernet cable like this must not be longer than 500m, and may have a maximum of 100 transceivers. The distance between two transceivers must be at least 2.5m.

A transceiver contains the transmit and receive logic. It ensures regeneration-free data transfers up to 500m cable length and carries out collision detection and carrier sensing. Another task is electrical isolation between the station and the thick-wire cable. The transceiver is supplied by the station via the transceiver cable. There are also mini-transceivers that can be plugged directly to the AUI connector of the Ethernet device.

The thick-wire cable must be electrically terminated by a 50- $\Omega$  termination resistor. The line must only be grounded at one end (not at both).

#### 2.6.4 10Base-T

10Base-T is one of several adaptations of the Ethernet (IEEE 802.3) standard for Local Area Networks (LANs). The 10Base-T standard (also called Twisted Pair Ethernet) uses a twisted-pair cable with maximum lengths of 100 meters. The cable is thinner and more flexible than the coaxial cable used for the 10Base-2 or 10Base-5 standards. Since it is also cheaper, it is the preferable solution for costsensitive applications.

Cables in the 10Base-T system connect with RJ45 connectors. A star topology is common with 12 or more computers connected directly to a hub or concentrator.

The 10Base-T system operates at 10Mbps and uses baseband transmission methods.

#### 2.6.5 100Base-T

The 100Base-T networking standard supports data transfer rates up to 100Mbps. 100Base-T is actually based on the older Ethernet standard. Because it is 10 times faster than Ethernet, it is often referred to as Fast Ethernet. Officially, the 100Base-T standard is IEEE  $802.3\mu$ .

Like Ethernet, 100Base-T is based on the CSMA/CD LAN access method. There are several different cabling schemes that can be used with 100Base-T, including:

- 100Base-TX: two pairs of high-quality twisted-pair wires
- 100Base-T4: four pairs of normal-quality twisted-pair wires
- 100Base-FX: fiber optic cables

#### 2.7 SCSI Interface

The SCSI interface of the A11 is based on the SYM53C895 device and supports wide (16-bit) and narrow (8-bit) configurations. It supports Ultra and Ultra2 SCSI modes with a maximum transfer rate of 80MB/s. Signaling interfaces supported are either SE (single-ended) or LVD (low voltage differential).

The A11 provides active termination that can be changed between SE and LVD mode. Mixed operation of SE and LVD is not possible.

You can set SE or LVD mode through MENMON.

#### 2.7.1 Connection

A standard VHDCI connector is provided at the front panel.

Connector types:

- 68-pin shielded half-pitch D-Sub receptacle, very high density (VHD)
- Mating connector: 68-pin half-pitch D-Sub plug, VHD

Table 5. Signal Mnemonics for SCSI Interface

| Signal     | Direction | Function                         |  |  |  |
|------------|-----------|----------------------------------|--|--|--|
| DIFFSENSE  | in/out    | Differential mode sense          |  |  |  |
| GND        | -         | Ground                           |  |  |  |
| SACK+/-    | in/out    | Acknowledge, differential pair   |  |  |  |
| SATN+/-    | in/out    | Attention, differential pair     |  |  |  |
| SBSY+/-    | in/out    | Busy, differential pair          |  |  |  |
| SCD+/-     | in/out    | Command/data, differential pair  |  |  |  |
| SD+/-[015] | in/out    | Data lines, differential pairs   |  |  |  |
| SDP+/-[01] | in/out    | Data parity, differential pairs  |  |  |  |
| SIO+/-     | in/out    | Input/output, differential pair  |  |  |  |
| SMSG+/-    | in/out    | Message, differential pair       |  |  |  |
| SREQ+/-    | in/out    | Request, differential pair       |  |  |  |
| SRST+/-    | in/out    | Bus reset, differential pair     |  |  |  |
| SSEL+/-    | in/out    | Select device, differential pair |  |  |  |
| TERMPWR    | -         | Termination power                |  |  |  |

The A11 also supports two SCSI interfaces for rear I/O via a rear I/O adapter at VMEbus P2. (See also Chapter 2.21.2.3 Connecting a Rear I/O Adapter to P2 on page 54 and MEN's website for available adapters.)



Please note that front connection allows SE or LVD mode, while rear connection only permits SE mode. If you have connected a device at the rear, you can use only SE mode also at the front.

|            | siyili |         |    |             |
|------------|--------|---------|----|-------------|
|            | 68     | SD-[11] | 34 | SD+/GND[11] |
|            | 67     | SD-[10] | 33 | SD+/GND[10] |
|            | 66     | SD-[9]  | 32 | SD+/GND[9]  |
|            | 65     | SD-[8]  | 31 | SD+/GND[8]  |
|            | 64     | SIO-    | 30 | SIO+/GND    |
|            | 63     | SREQ-   | 29 | SREQ+/GND   |
|            | 62     | SCD-    | 28 | SCD+/GND    |
|            | 61     | SSEL-   | 27 | SSEL+/GND   |
|            | 60     | SMSG-   | 26 | SMSG+/GND   |
| $\frown$   | 59     | SRST-   | 25 | SRST+/GND   |
| 68 🗖 🗖 34  | 58     | SACK-   | 24 | SACK+/GND   |
|            | 57     | SBSY-   | 23 | SBSY+/GND   |
|            | 56     | -       | 22 | -           |
|            | 55     | SATN-   | 21 | SATN+/GND   |
|            | 54     | -       | 20 | -           |
|            | 53     | -       | 19 | -           |
|            | 52     | TERMPWR | 18 | TERMPWR     |
|            | 51     | TERMPWR | 17 | TERMPWR     |
|            | 50     | -       | 16 | DIFFSENSE   |
|            | 49     | -       | 15 | -           |
|            | 48     | SDP-[0] | 14 | SDP+/GND[0] |
|            | 47     | SD-[7]  | 13 | SD+/GND[7]  |
|            | 46     | SD-[6]  | 12 | SD+/GND[6]  |
| 35 🔲 🔲 1   | 45     | SD-[5]  | 11 | SD+/GND[5]  |
| $\bigcirc$ | 44     | SD-[4]  | 10 | SD+/GND[4]  |
|            | 43     | SD-[3]  | 9  | SD+/GND[3]  |
|            | 42     | SD-[2]  | 8  | SD+/GND[2]  |
|            | 41     | SD-[1]  | 7  | SD+/GND[1]  |
|            | 40     | SD-[0]  | 6  | SD+/GND[0]  |
|            | 39     | SDP-[1] | 5  | SDP+/GND[1] |
|            | 38     | SD-[15] | 4  | SD+/GND[15] |
|            | 37     | SD-[14] | 3  | SD+/GND[14] |
|            | 36     | SD-[13] | 2  | SD+/GND[13] |
|            | 35     | SD-[12] | 1  | SD+/GND[12] |
|            |        |         |    |             |

Table 6. Pin Assignment of the 68-pin VHDCI SCSI Connector

#### 2.7.2 General

SCSI (Small Computer System Interface) has a long history in the relatively short period of the computing industry. SCSI's origins date back to the Selector Channel on IBM-360 systems. It was first scaled down to be a universal, intelligent disk drive interface. SCSI became an ANSI standard in 1986.

Over the last years since it became an official industry standard, SCSI has grown and evolved to keep pace with the demands of the most sophisticated systems. The standard recognizes magnetic disk and tape drives, various types of optical disk drives, printers, scanners, processors, communications devices, medium changers, and more.

The standard has also evolved to take advantage of newer hardware and more intelligent controllers; caching is recognized; intelligent command queuing is accommodated. There are also provisions for intelligent self-testing by the peripheral. The data path has been widened and transfer speeds have been increased to keep pace with system requirements.

#### 2.7.2.1 SCSI Versions

SCSI drives have an integrated SCSI controller. There are different sorts of SCSI interfaces, differing in the type of data transfer. SCSI signals can be transmitted either via an 8-bit (narrow) or a 16-bit (wide SCSI) bus. It is possible to connect up to 7 drives to an 8-bit bus, and up to 15 drives to a 16-bit bus. Both bus widths can be configured as single-ended or differential SCSI. Single-ended SCSI transmits the signals only via one line, differential SCSI via two lines. This makes four different interface configurations: single-ended with 8 bits, single-ended with 16 bits, differential with 8 bits and differential with 16 bits. When choosing a subsystem you must make sure that the SCSI interface of the host adapter corresponds to the drive.

In general, 8-bit devices can be connected to a 16-bit bus. However, you must consider a number of special rules for configuration. In addition, performance of the 16-bit bus is limited to that of an 8-bit bus, so that there may be transfer problems on the SCSI bus. If both single-ended and differential versions are operated on the bus at the same time, this can lead to damage to the disk drive and the controller. If the controller and disk drive interfaces do not match, a single-differential-ended converter must be used. In this case, however, impedances and signal timing on the SCSI bus may be changed, which in turn can result in problems.

#### Single-Ended (SE) and Differential (DI) SCSI

With single-ended (SE) SCSI each signal is transferred on one line, with differential (DI) SCSI on two lines. The advantages of differential SCSI lie in longer cable lengths (25m instead of 6m) and greater immunity to interference. Disadvantages are higher costs for disk drives and host adapter. Combining SE SCSI and DI SCSI drives on one bus is not possible without special converters.

#### Low Voltage Differential (LVD) SCSI

LVD is a differential bus technology that combines much of the bus length, noise immunity and performance benefits of conventional DI SCSI with the power consumption and cost of SE SCSI interfaces. Power consumption of LVD devices is reduced compared to a conventional differential bus through improvements in receiver design that permit reductions in steady-state current consumption and signaling voltage.

Because of this lower power consumption, LVD drivers can be integrated into the silicon interface chips thus eliminating the signal skew, real estate and cost associated with separate differential components. What's more, by taking advantage of the latest CMOS processes, dual-mode LVD cells can be designed that support either single-ended or differential operation. Selection of operational mode (SE or DI) by the device is automatic and is done without the use of jumpers. Because of this compatibility, the cost of SCSI devices with LVD silicon will not differ appreciably from comparable single-ended drives.

#### Synchronous and Asynchronous Data Transfer

SCSI data transfer can be asynchronous or synchronous, the latter being faster. With asynchronous data transfer, each byte is sent and confirmed separately, whereas with synchronous transfer several bytes are sent at once and then confirmed as one. This makes for smaller overhead and higher transfer rates. Generally, all peripherals can operate asynchronously. Synchronous drives or controllers perform a handshake before data exchange, i.e. they check whether the communication partner is capable of synchronous transfer. After handshaking, they automatically use the appropriate data transfer method.

#### 2.7.2.2 SCSI Cables

In order to allow trouble-free data transfer, some basic aspects must be considered when choosing an SCSI cable.

The SCSI cables must be specified according to UL (Underwriters' Laboratories) and CSA (Canadian Standard Association). The individual wires of the cable must be made of copper (or better: tin-plated copper). they must be twisted in pairs, and in addition the cable should be twisted over a length of max. 1m. The complete cable needs double screening.

If several peripherals are connected to a SCSI bus, the individual connection cables should be as short as possible and ideally have the same length. This reduces susceptibility to interference.

With wide SCSI, data transfer is done with 16 instead of 8 bits; the lines available in the 50-pin SCSI cable are not enough. Therefore, wide SCSI uses special 68-line cables for both single-ended wide SCSI and differential wide SCSI.

| Туре             | Bus Width | Throughput | SE Line | DI Line | LVD Line | Max. Devices |
|------------------|-----------|------------|---------|---------|----------|--------------|
| SCSI-1           | 8 bits    | 5 MB/s     | 6m      | 25m     | 12m      | 8            |
| Fast SCSI        | 8 bits    | 10 MB/s    | 3m      | 25m     | 12m      | 8            |
| Fast Wide SCSI   | 16 bits   | 20 MB/s    | 3m      | 25m     | 12m      | 16           |
| Ultra SCSI       | 8 bits    | 20 MB/s    | 1.5m    | 25m     | 12m      | 8            |
| Ultra SCSI       | 8 bits    | 20 MB/s    | 3m      | -       | -        | 4            |
| Wide Ultra SCSI  | 16 bits   | 40 MB/s    | -       | 25m     | 12m      | 16           |
| Wide Ultra SCSI  | 16 bits   | 40 MB/s    | 1.5m    | -       | -        | 8            |
| Wide Ultra SCSI  | 16 bits   | 40 MB/s    | 3m      | -       | -        | 4            |
| Ultra2 SCSI      | 8 bits    | 40 MB/s    | -       | -       | 12m      | 8            |
| Wide Ultra2 SCSI | 16 bits   | 80 MB/s    | -       | -       | 12m      | 16           |

Table 7. Overview of SCSI Types, Maximum Bus Widths, Throughput and Line Lengths

#### 2.7.3 SCSI Termination on A11

The A11 can be located in the "middle" of the SCSI bus or at its end. You must make sure the board is terminated properly for any case.

As mentioned above, the A11 provides active termination, which can be configured as needed through MENMON. Please refer to MENMON command H EE for detailed MENMON settings.

The following figure and table clarify termination on A11:

Figure 4. SCSI Termination on A11




Table 8. SCSI Termination on A11

| 68-pin Front Connector | P2 Rear I/O via Adapter | Applicable SCSI<br>Termination |  |
|------------------------|-------------------------|--------------------------------|--|
| Not connected          | Not connected           | Active termination on          |  |
| SCSI device connected  | Not connected           | Active termination on          |  |
| Not connected          | SCSI device connected   | Active termination on          |  |
| SCSI device connected  | SCSI device connected   | Active termination off         |  |

#### 2.8 PCI Expansion

The A11's PCI expansion slot allows for various expansions at the PCI bus, e.g. using expansion cards for PMC or PC•MIP mezzanines. Different expansion boards are in preparation.

Connector types:

. . . . . .

- 114-pin matched impedance receptacle connector, MICTOR .025 [0.64] centerline
- Mating connector:
  - 114-pin matched impedance plug connector, MICTOR .025 [0.64] centerline

|     |     |     | _       | 0.01/    |     | 0        | 0.01/    |
|-----|-----|-----|---------|----------|-----|----------|----------|
|     |     | 1   | 3.3V    |          | 2   | 3.3V     |          |
|     |     | 3   | CLK     |          | 4   | INTA#    |          |
|     |     | 5   | GND     |          | 6   | INTB#    |          |
|     |     | 7   | PURST#  |          | 8   | INTC#    |          |
|     |     | 9   | HRESET# |          | 10  | INTD#    |          |
|     |     | 11  | TDO     |          | 12  | TDI      |          |
|     |     | 13  | TMS     |          | 14  | TCK      |          |
|     |     | 15  | TRST#   |          | 16  | PRESENT# |          |
| 1   |     |     | 17      | GNT#     |     | 18       | REQ#     |
| 1   |     | 2   | 19      | +12V     | GND | 20       | -12V     |
|     |     |     | 21      | PERR#    |     | 22       | SERR#    |
|     | 36  |     | 23      | LOCK#    |     | 24       | SDONE#   |
|     |     |     | 25      | DEVSEL#  |     | 26       | SBO#     |
|     |     |     | 27      | GND      |     | 28       | GND      |
|     |     |     | 29      | TRDY#    |     | 30       | IRDY#    |
|     |     |     | 31      | STOP#    |     | 32       | FRAME#   |
| 39  |     | 40  | 33      | GND      |     | 34       | GND      |
|     |     |     | 35      | ACK64#   |     | 36       | Reserved |
|     |     |     | 37      | REQ64#   |     | 38       | Reserved |
|     |     |     | 39      | PAR      |     | 40       | RST#     |
|     |     |     | 41      | C/BE1#   |     | 42       | C/BE0#   |
|     |     |     | 43      | C/BE3#   |     | 44       | C/BE2#   |
|     | 36  |     | 45      | AD1      |     | 46       | AD0      |
|     | 3 F |     | 47      | AD3      |     | 48       | AD2      |
| 77  |     | 78  | 49      | AD5      |     | 50       | AD4      |
|     | 36  |     | 51      | AD7      |     | 52       | AD6      |
|     |     |     | 53      | AD9      |     | 54       | AD8      |
|     | 36  |     | 55      | AD11     |     | 56       | AD10     |
|     |     |     | 57      | AD13     | +5V | 58       | AD12     |
|     |     |     | 59      | AD15     |     | 60       | AD14     |
|     |     |     | 61      | AD17     |     | 62       | AD16     |
| 113 | 4 Þ | 114 | 63      | AD19     |     | 64       | AD18     |
|     |     |     | 65      | AD21     |     | 66       | AD20     |
|     |     | 67  | AD23    |          | 68  | AD22     |          |
|     |     |     | 69      | AD25     |     | 70       | AD24     |
|     |     | 71  | AD27    |          | 72  | AD26     |          |
|     |     | 73  | AD29    |          | 74  | AD28     |          |
|     |     | 75  | AD31    |          | 76  | AD30     |          |
|     |     |     | 77113   | Reserved | GND | 78114    | Reserved |

. . . . . . .

Table 9. Pin Assignment of the 114-pin PCI Expansion Connector

. . . . . . . . . . . . . . . . . . .

#### 2.9 PC•MIP Slots

The A11 has two PC•MIP slots for Type-I and Type-II modules. Interfacing between the local 5V PCI bus and the 3.3V PC•MIP PCI bus is done using a DEC21150 PCI-to-PCI bridge.

The PC•MIP slots enable the user to add functionality to the A11 CPU board, from graphics to process I/O.

#### 2.9.1 Installing PC•MIPs

Perform the following steps to install a PC•MIP:

- ☑ If you want to install a Type-II PC•MIP (with front connector), you must remove the blank bezel at the front panel of the A11 first: Remove the respective bezel keeper by loosening the keeper screw at the bottom side of the A11. (See Figure 1, Map of the Board - Front Panel and Top View, on page 16).
- $\square$  Place the finished bezel supplied with your PC•MIP in the front panel cut-out and reinstall the bezel keeper.
- ☑ Place the PC•MIP on the target slot of the A11, aligning the three connectors (P1/J1, P2/J2, P3/J3) and the two standoffs.
- ☑ If you are installing a Type-II PC•MIP, carefully put the module's front connector through the finished bezel, holding the module at a 45° angle.
- $\square$  Screw the PC•MIP to the carrier by **alternately** tightening the two captive screws on the label side of the PC•MIP. The module will be "injected" safely.

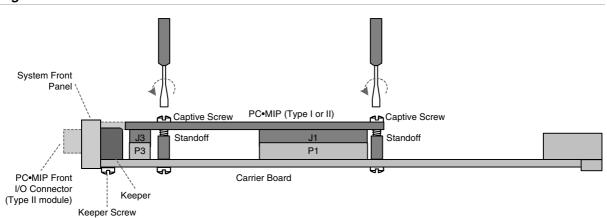



Figure 5. Installation of a PC•MIP

To deinstall PC•MIPs from the carrier board, just loosen the appropriate screws at the label side of the PC•MIP. The injector/ejector system will "eject" the PC•MIP.

#### 2.9.2 PC•MIP Connectors

PC•MIP modules connect to the A11's PCI bus via the two identical 64-pin connectors P1 and P2. The connector layout is fully compatible to the PC•MIP specification and will not be repeated here.



Although the A11 has a third, identical 64-pin connector (P3), **it does not support rear I/O connection**.

Connector types of P1, P2 and P3:

- 64-pin SMT plug connector according to IEEE P1386, e. g. Molex 71436-0864
- Mating connector:

. . . . . . .

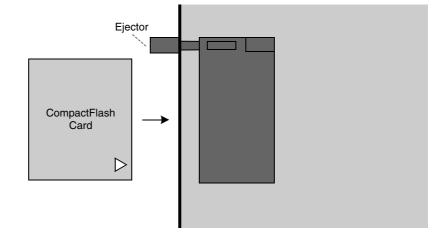
64-pin SMT receptacle connector according to IEEE P1386, e. g. Molex 71439-1864

# 2.10 CompactFlash

CompactFlash is a standard for small form factor ATA Flash drives. It is electrically compatible to the PC Card 1995 and PC Card ATA standards.

The CompactFlash standard is supported by industry's leading vendors of Flash cards.

You can use CompactFlash cards with the A11 through the AD35 adapter, which is accessible at the front panel. The adapter is connected using a board-to-board connector. The AD35 configures CompactFlash cards in a True IDE Mode of operation.




Note: Removing and reinserting a CompactFlash card while the host computer's power is on might damage the IDE controller or the storage card. The least that will happen is a reconfiguration of the CompactFlash card to PC Card ATA mode from the original True IDE Mode.

### 2.10.1 Installing CompactFlash

The A11 is shipped without a CompactFlash card installed. To install CompactFlash, please stick to the following procedure.

#### Figure 6. CompactFlash Card



- $\square$  Power down your system.
- $\square$  Insert the card carefully as indicated by the arrow on top of the card, making sure that all the contacts are aligned properly and the card is firmly in the card socket.
- $\blacksquare$  Remove the CompactFlash card by pressing the ejector.
- $\square$  Observe manufacturer notes on usage of the Flash cards.

#### 2.10.2 Supported CompactFlash Cards

The A11 supports standard CompactFlash cards.

For CompactFlash cards available from MEN see MEN's website.

# 2.11 Keyboard/Mouse

The built-in PS2/AT keyboard and PS2 mouse controller of the M1543 is connected to a single mini DIN connector at the front panel.

Note: For the connection of both devices a special cable is necessary. MEN offers a Y-cable for easy connection of a keyboard and mouse. For ordering numbers please refer to MEN's website.

A 6-pin mini DIN connector is provided to connect a standard PS/2 keyboard.

Connector types:

- 6-pin circular mini DIN receptacle
- Mating connector: 6-pin circular mini DIN plug, available for soldering and crimp connection

Table 10. Pin Assignment of the 6-Pin Mini DIN Keyboard/Mouse Connector

| 4 6  |   |        | 4 | KB_VCC |   |        |
|------|---|--------|---|--------|---|--------|
| 2000 | 2 | MSEDAT |   |        | 6 | MSECLK |
|      | 1 | KBDAT  |   |        | 5 | KBCLK  |
| 3 5  |   |        | 3 | KB_GND |   |        |

Table 11. Signal Mnemonics for Keyboard/Mouse Interface

| Signal    | Direction | Function                                   |
|-----------|-----------|--------------------------------------------|
| KB_GND    | -         | Keyboard logic ground                      |
| KB_VCC    | -         | Keyboard +5V supply, max. DC current 200mA |
| KBCLK     | out       | Keyboard clock                             |
| KBDAT     | out       | Keyboard data                              |
| MSECLKDAT | out       | Mouse clock                                |
| MSEDAT    | out       | Mouse data                                 |

# 2.12 Serial Ports COM1/COM2

The A11 provides two high-performance 16550 compatible UARTs with 16-byte send/receive FIFOs and programmable baud rate generator. You can set the baud rate through MENMON.

# 2.12.1 Connection

The serial ports COM1 and COM2 are accessible at the front panel as well as on a rear I/O adapter. The A11 has two different pairs of physical RS232 transceivers. You can change configuration of the receiver for front or rear I/O through MENMON command *EE*. Please note that the transmitters are **always enabled**.

A11 provides two 9-pin micro D-Sub connectors at the front panel. Their pin assignment is PC-compatible.

Connector types:

- 9-pin micro D-Sub socket connector with screw locking, ITT Cannon MDSM-9SC-Z11-VS1
- Mating connector: 9-pin connector with locking post, ITT Cannon MDSM-9PE-Z10-VR

**Table 12.** Pin Assignment of the 9-pin micro D-Sub COM1/COM2 Plug Connectors(RS232)

|             | 6 | DSR | 1 | DCD |
|-------------|---|-----|---|-----|
| 6<br>9<br>9 | 7 | RTS | 2 | RXD |
|             | 8 | CTS | 3 | TXD |
|             | 9 | RI  | 4 | DTR |
|             |   |     | 5 | GND |

| Table 13. Signal Mnemonics for RS232 Serial Ports COM1/CO | )M2 |
|-----------------------------------------------------------|-----|
|                                                           |     |

| Signal | Direction | Function            |
|--------|-----------|---------------------|
| CTS    | in        | Clear to send       |
| DCD    | in        | Data carrier detect |
| DSR    | in        | Data set ready      |
| DTR    | out       | Data terminal ready |
| GND    | -         | Logic ground        |
| RI     | in        | Ring indicator      |
| RTS    | out       | Request to send     |
| RXD    | in        | Receive data        |
| TXD    | out       | Transmit data       |

The A11 also supports COM1 and COM2 at VMEbus P2 for rear I/O via a rear I/O adapter. The signal level is fixed to TTL at the rear. This allows flexible line interface configuration using serial interface (SA) adapters. (See also Chapter 2.21.2.3 Connecting a Rear I/O Adapter to P2 on page 54 and MEN's website for available rear I/O and SA adapters.)

# 2.13 Asynchronous/Synchronous Serial Ports COM3/COM4

The A11 uses the Zilog Z85230 ESCC (Enhanced Serial Communications Controller) to implement two serial communications interfaces—COM3 and COM4. COM3 is prepared for asynchronous protocols and COM4 for synchronous protocols such as SDLC or HDLC. The ports are accessible only via VMEbus P2 via a rear I/O adapter. The hardware supports asynchronous serial baud rates of 110 bytes/s up to 38.4 KB/s.

For synchronous operation of COM4 you need to specify the clock signaling for transmitter and receiver. With the help of three jumpers you can select the source of the synchrounous clock.

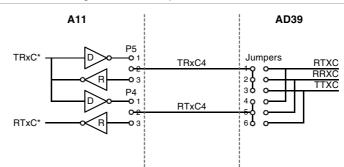



Figure 7. COM4 Clock Signals — Principle

You can configure the clock signals using jumpers:

Table 14. Configuring Clock Signals for COM4

| Clock Signal           | A11 Source                | External Source           |
|------------------------|---------------------------|---------------------------|
| Transmit clock (TRxC#) | P5 P7 P6<br>1 2 3 1 2 1 2 | P5 P7 P6<br>1 2 3 1 2 1 2 |
| Receive clock (RTxC#)  | P4                        | P4                        |

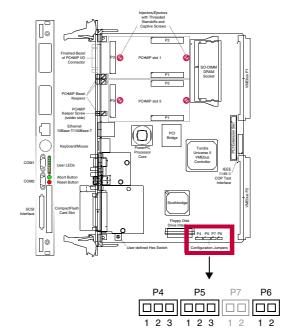



Figure 8. Jumpers for Clock Selection for COM4 (Default Setting: all jumpers removed)

See Chapter 2.21.2.3 Connecting a Rear I/O Adapter to P2 on page 54 and MEN's website for available rear I/O adapters.

# 2.14 Enhanced Parallel Port

The enhanced parallel port of the A11 is connected to the VMEbus P2 connector for rear I/O via a rear I/O adapter. It supports ECP, EPP, PS/2, SPP and 1284 compliance. The port includes a protection circuit against damage caused when a printer is powered up or operated at higher voltages.

See Chapter 2.21.2.3 Connecting a Rear I/O Adapter to P2 on page 54 and MEN's website for available rear I/O adapters.

# 2.15 Floppy Disk Controller

The floppy disk controller supports up to 2.88 MB formatted floppy disk drives. It is compatible with 82077 and supports 16-byte data FIFOs. It includes a high-performance internal data separator and supports standard 1 Mbit/s, 500 Kbit/s, 300 Kbit/s and 250 Kbit/s data transfer rates.

All standard PC modes of 3.5" floppy disk drives (720KB/1.2MB/1.44MB) are implemented. Drives A and B are swapable.

Connector types:

- 26-pin ZIF/SMT receptacle, 1mm pitch, for FPC/FFC connection
- mating connector: 26-pin ZIF plug, 1mm pitch, for FPC/FFC connection

|    | 1  | +5V     |
|----|----|---------|
|    | 2  | INDEX#  |
|    | 3  | +5V     |
|    | 4  | SEL0#   |
|    | 5  | +5V     |
|    | 6  | CHANGE# |
|    | 7  | -       |
|    | 8  | -       |
|    | 9  | DENSEL  |
|    | 10 | MOTON#  |
|    | 11 | -       |
|    | 12 | DIR#    |
|    | 13 | -       |
|    | 14 | STEP#   |
|    | 15 | GND     |
|    | 16 | WDATA#  |
|    | 17 | GND     |
|    | 18 | WGATE#  |
|    | 19 | GND     |
| 26 | 20 | TRK0#   |
| 븬  | 21 | GND     |
|    | 22 | WP#     |
|    | 23 | GND     |
|    | 24 | RDATA#  |
|    | 25 | GND     |
|    | 26 | HDSEL#  |

Table 15. Pin Assignment of 26-pin ZIF Floppy Disk Drive Connector

| Signal  | Direction | Function                                            |
|---------|-----------|-----------------------------------------------------|
| +5V     | -         | +5V power supply, current-limited to 1.5A by a fuse |
| CHANGE# | in        | Disk change                                         |
| DENSEL  | out       | Density select                                      |
| DIR#    | out       | Direction                                           |
| GND     | -         | Digital ground                                      |
| HDSEL#  | out       | Head select                                         |
| INDEX#  | in        | Index                                               |
| MOTON#  | out       | Motor on                                            |
| RDATA#  | in        | Read data                                           |
| SEL0#   | out       | Drive select 0                                      |
| STEP#   | out       | Step                                                |
| TRK0#   | in        | Track 0                                             |
| WDATA#  | out       | Write data                                          |
| WGATE#  | out       | Write gate                                          |
| WP#     | in        | Write protect                                       |

Table 16. Signal Mnemonics for Floppy Disk Drive Connector

# 2.16 Hardware Monitor

The LM78 hardware monitor is used for voltage and temperature management. Several supply voltages can be monitored. When the programmed limits are exceeded, the monitor will generate an interrupt. Together with suitable software, you can use the hardware monitor to create voltage protocols, for example.

The on-board temperature is measured continuously.

Table 17. Hardware Monitor Channels

| Channel | Voltage                     |
|---------|-----------------------------|
| 0       | +5V                         |
| 1       | +3.3V                       |
| 2       | CPU core voltage            |
| 3       | +12V                        |
| 4       | Battery voltage from VMEbus |
| 5       | -12V                        |

#### 2.17 Timekeeper, NVRAM and Watchdog

The A11 includes the M48T59Y 64Kbit timekeeper NVRAM with watchdog. A snaphat top with battery and oscillator guarantees a typical data retention of 10 years at 25°C. The M48T59 checks its battery voltage at power-up. An internal control bit is set at power-up if the battery voltage is below 2.5V (typical).

The NVRAM is organized as an 8K x 8bit SRAM.

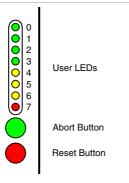
The timeout period of the watchdog timer is programmable from 1/16 s to 4 s in four steps.

# 2.18 Counter/Timer CIO Z8536

The Z8536 CIO is a counter/timer and parallel I/O unit which is used to provide the modem control lines which are not provided by the Z85230 ESCC.

In VME64 applications the geographic address pins may be read at the I/O pins.

Four ports are used for the software implementation of an SMB controller for serial devices such as LM78, 4-Kbit EEPROM or clock generation.


Three independent 16-bit counter timers are free for user implementations.

# 2.19 Reset/Abort Buttons and User/Status LEDs

A small adapter provides several control functions at the front panel:

- Reset/Abort button
- User/status LEDs.

#### Figure 9. Reset/Abort Buttons and User LEDs



# 2.19.1 Reset/Abort Buttons

The reset button at the front panel triggers a reset. If the slot-1 function is active, this reset will act globally for the VMEbus (SYSRESET#). If the slot-1 function is not active, the reset will act locally.

The abort button activates a non-maskable interrupt of the CPU.

# 2.19.2 User/Status LEDs

| Table 18. | User/Status LED Functions |
|-----------|---------------------------|
|-----------|---------------------------|

| LED | Color  | Description                                                                                             |
|-----|--------|---------------------------------------------------------------------------------------------------------|
| 0   | Green  | User-defined function through M1543 GPO 23                                                              |
| 1   | Green  | User-defined function through M1543 GPO 22                                                              |
| 2   | Green  | User-defined function through M1543 GPO 20                                                              |
| 3   | Green  | User-defined function through M1543 GPO 9                                                               |
| 4   | Yellow | VMEbus: slot-1 function; lights when VMEbus slot-1 functions are enabled                                |
| 5   | Yellow | PCI bus: PCI activity; lights when the IRDY# (Initiator Ready) signal line on the PCI bus is active     |
| 6   | Yellow | CPU: CPU activity; lights when the DBB# (Data Bus Busy) sig-<br>nal line on the processor bus is active |
| 7   | Red    | CHS: checkstop; driven by the PowerPC; lights when a halt condition from the processor is detected      |

# 2.20 User-Defined Hex Switch

The A11 provides a rotary hex switch for operating system requirements and user applications. Please refer to the corresponding software manual for the implemention.

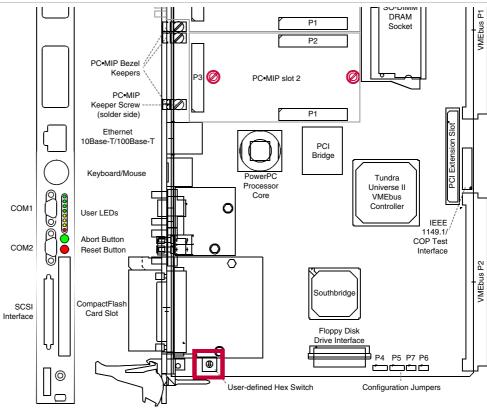



Figure 10. Position of Hex Switch

# 2.21 VMEbus Interface

The A11's VMEbus interface conforms to the VME64 specification. It has the following features:

- Tundra Universe II VMEbus chip
- Slot-1 functionality
- Wide range of VMEbus address and data transfer modes
  - A32/A24/A16 master and slave (no A64 or A40)
  - D64/D32/D16/D08 master and slave (no MD32)
  - MBLT, BLT, ADOH, RMW, LOCK, location monitors
- Interrupt handler: 7-level
- Interrupter: 7-level

# 2.21.1 Implementation on the Board

# 2.21.1.1 VMEbus Master

The Tundra Universe II becomes VMEbus master when it is requested by the PCI bus. In this case it acts as a PCI target device.

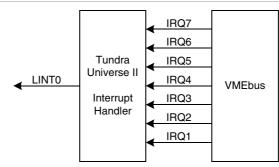
The A11 supports all addressing and data transfer modes documented in the VME64 specification (except A64) including read-modify-write and address-only cycles.

The mapping of the PCI address spaces to the VMEbus address areas depends on software. Please refer to the board support package of the respective operating system.

# 2.21.1.2 VMEbus Slave

The Tundra Universe II may be also configured for VMEbus slave capabillities. The chip then works as a master to the local PCI bus.

# 2.21.1.3 VMEbus Interrupter


Interrupt generation is possible on all seven VMEbus levels. The interrupts are generated fully under software control by setting the specific hardware registers. Please refer to the Tundra Universe II user manual for a detailed description.

# 2.21.1.4 VMEbus Interrupt Handler

The A11 is able to handle all seven VMEbus interrupts. The interrupts may be masked and enabled in the Tundra Universe II register set (cf. Chapter 4.2 Interrupt Handling on page 94).

The Tundra Universe II generates a single PCI interrupt with the LINTO on the INTB line. This interrupt is routed inside the M1543 interrupt controller to a dedicated ISA interrupt.

Figure 11. VMEbus Interrupts



When receiving an interrupt from the VMEbus the Tundra Universe II first generates an IACK cycle to the VMEbus. After completion of the cycle the interrupt to the PCI bus will be asserted and the local CPU may read the interrupt vector number from the Tundra Universe II registers.

# 2.21.1.5 VMEbus Utility Bus

The A11 supports all VMEbus utility functions such as:

- 4-level bus arbitration with fixed priority (PRI), single level arbitration (SGL) or round-robin (RRS) mode
- Slot-1 detection
- Programmable VMEbus timeout from 16..1024µs
- System clock driver
- IACK daisy chain driver
- System reset generation
- SYSFAIL# and ACFAIL# monitor

# 2.21.2 Connection

Connector types P1/P2 (3-row VMEbus):

- Type-C 96-pin plug connector according to DIN41612/MIL-C-55302/IEC603-2
- Mating connector: Type-C 96-pin receptacle according to DIN41612/MIL-C-55302/IEC603-2

Connector types P1/P2 (5-row VMEbus):

- 160-pin, 5-row plug, performance level according to DIN41612, part 5
- Mating connector: 160-pin, 5-row receptacle, performance level according to DIN41612, part 5



Note: Connector rows Z and D are only present with 5-row VMEbus models of the A11!

# 2.21.2.1 Pin Assignment of P1

. . . . . . . . . . . . . . . .

The pin assignment of P1 conforms to the VME64 specification VITA 1-1994 and VME64 Extensions Draft Standard VITA 1.1-199x.

Table 19. Pin Assignment of the 5/3-Row, 96/160-Pin VMEbus Connector P1

|       |    | Z   | A        | В       | С         | D    |
|-------|----|-----|----------|---------|-----------|------|
|       | 1  | -   | D0       | BBSY#   | D8        | -    |
|       | 2  | GND | D1       | BCLR#   | D9        | GND  |
|       | 3  | -   | D2       | ACFAIL# | D10       | -    |
|       | 4  | GND | D3       | BG0IN#  | D11       | -    |
|       | 5  | -   | D4       | BG0OUT# | D12       | -    |
|       | 6  | GND | D5       | BG1IN#  | D13       | -    |
|       | 7  | -   | D6       | BG1OUT# | D14       | -    |
|       | 8  | GND | D7       | BG2IN#  | D15       | -    |
|       | 9  | -   | GND      | BG2OUT# | GND       | GAP# |
|       | 10 | GND | SYSCLK   | BG3IN#  | SYSFAIL#  | GA0# |
| (000) | 11 | -   | GND      | BG3OUT# | BERR#     | GA1# |
|       | 12 | GND | DS1#     | BR0#    | SYSRESET# | -    |
|       | 13 | -   | DS0#     | BR1#    | LWORD#    | GA2# |
|       | 14 | GND | WRITE#   | BR2#    | AM5       | -    |
|       | 15 | -   | GND      | BR3#    | A23       | GA3# |
|       | 16 | GND | DTACK#   | AM0     | A22       | -    |
|       | 17 | -   | GND      | AM1     | A21       | GA4# |
|       | 18 | GND | AS#      | AM2     | A20       | -    |
|       | 19 | -   | GND      | AM3     | A19       | -    |
|       | 20 | GND | IACK#    | GND     | A18       | -    |
|       | 21 | -   | IACKIN#  | -       | A17       | -    |
| (000) | 22 | GND | IACKOUT# | -       | A16       | -    |
|       | 23 | -   | AM4      | GND     | A15       | -    |
|       | 24 | GND | A7       | IRQ7#   | A14       | -    |
| 32 [  | 25 | -   | A6       | IRQ6#   | A13       | -    |
|       | 26 | GND | A5       | IRQ5#   | A12       | -    |
|       | 27 | -   | A4       | IRQ4#   | A11       | -    |
|       | 28 | GND | A3       | IRQ3#   | A10       | -    |
|       | 29 | -   | A2       | IRQ2#   | A9        | -    |
|       | 30 | GND | A1       | IRQ1#   | A8        | -    |
|       | 31 | -   | -12V     | VSTBY   | +12V      | GND  |
|       | 32 | GND | +5V      | +5V     | +5V       | -    |

- - - - - - - - -

# 2.21.2.2 Pin Assignment of P2

|                |    | Z        | А       | В       | С        | D   |
|----------------|----|----------|---------|---------|----------|-----|
|                | 1  | SDB[8]#  | SDB[0]# | +5V     | ENC#     | -   |
|                | 2  | GND      | SDB[1]# | GND     | ENC      | -   |
|                | 3  | SDB[9]#  | SDB[2]# | -       | ENT#     | -   |
|                | 4  | GND      | SDB[3]# | V_A[24] | ENT      | -   |
|                | 5  | SDB[10]# | SDB[4]# | V_A[25] | ENR#     | -   |
|                | 6  | GND      | SDB[5]# | V_A[26] | ENR      | -   |
| 74000          | 7  | SDB[11]# | SDB[6]# | V_A[27] | +12VLAN  | -   |
|                | 8  | GND      | SDB[7]# | V_A[28] | PR_STR#  | -   |
|                | 9  | SDB[12]# | SDBP[0] | V_A[29] | PR_D[0]  | -   |
|                | 10 | GND      | SATN#   | V_A[30] | PR_D[1]  | -   |
|                | 11 | SDB[13]# | SBSY#   | V_A[31] | PR_D[2]  | -   |
| (000)          | 12 | GND      | SACK#   | GND     | PR_D[3]  | -   |
|                | 13 | SDB[14]# | SRST#   | +5V     | PR_D[4]  | -   |
|                | 14 | GND      | SMSG#   | V_D[16] | PR_D[5]  | -   |
| (000)<br>(000) | 15 | SDB[15]# | SSEL#   | V_D[17] | PR_D[6]  | -   |
|                | 16 | GND      | SCD#    | V_D[18] | PR_D[7]  | -   |
|                | 17 | SDBP[1]  | SREQ#   | V_D[19] | PR_ACK#  | -   |
|                | 18 | GND      | SIO#    | V_D[20] | PR_BSY   | -   |
|                | 19 | -        | TxD3    | V_D[21] | PR_PE    | -   |
|                | 20 | GND      | RxD3    | V_D[22] | PR_SLCT  | -   |
|                | 21 | -        | RTS3    | V_D[23] | PR_INIT# | -   |
|                | 22 | GND      | CTS3    | GNV_D[  | PR_ERR#  | -   |
| (000)          | 23 | -        | DTR3    | V_D[24] | TxD1     | -   |
|                | 24 | GND      | DCD3    | V_D[25] | RxD1     | -   |
| 32             | 25 | -        | TxD4    | V_D[26] | RTS1     | -   |
|                | 26 | GND      | RxD4    | V_D[27] | CTS1     | -   |
|                | 27 | -        | RTS4    | V_D[28] | TxD2     | -   |
|                | 28 | GND      | TRxC4   | V_D[29] | RxD2     | -   |
|                | 29 | -        | CTS4    | V_D[30] | RTS2     | -   |
|                | 30 | GND      | DTR4    | V_D[31] | CTS2     | -   |
|                | 31 | -        | DCD4    | GND     | TERMPWR  | GND |
|                |    |          |         |         |          |     |

GND

32

Table 20. Pin Assignment of the 5/3-Row, 96/160-Pin VMEbus Connector P2

Note: The pin assignment of P2 is compatible with Motorola's MVME712M transition module.

RTxC4

+5V

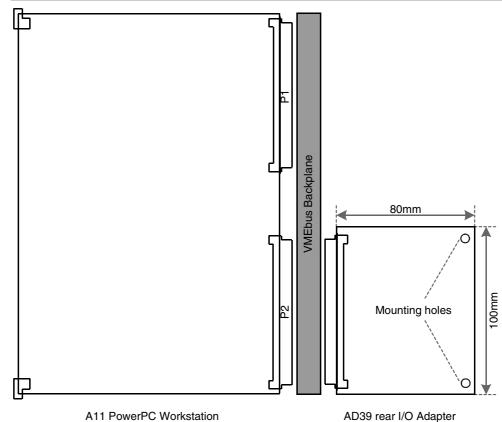
DIFFSENSE

|               | Signal Direction |        | Function                    |  |  |
|---------------|------------------|--------|-----------------------------|--|--|
| Se            | +5V              | -      | +5V power supply            |  |  |
| Line          | +12V             | -      | +12V power supply           |  |  |
| /er           | +12VLAN - ·      |        | +12V Ethernet power supply  |  |  |
| Power Lines   | GND              | -      | Digital ground              |  |  |
| SL            | V_A[24:A31]      | in     | VMEbus address lines A24A31 |  |  |
| VMEbus        | V_D[16:D31]      | in/out | VMEbus data lines D16D31    |  |  |
| let           | ENC/ENC#         | in?    | Collision                   |  |  |
| Ethernet      | ENR/ENR#         | in     | Receive lines               |  |  |
| Eth           | ENT/ENT#         | out    | Transmit lines              |  |  |
|               | PR_ACK#          | in     | Parallel port acknowledge   |  |  |
|               | PR_BUSY          | in     | Parallel port busy          |  |  |
| ort           | PR_D[7:0]        | in/out | Parallel port data [7:0]    |  |  |
| Parallel Port | PR_ERR#          | in     | Parallel port error         |  |  |
| ralle         | PR_INIT#         | out    | Parallel port init          |  |  |
| Pai           | PR_PE            | in     | Parallel port paper end     |  |  |
|               | PR_SLCT          | out    | Parallel port select        |  |  |
|               | PR_STR#          | out    | Parallel port strobe        |  |  |
|               |                  |        | Differential mode sense     |  |  |
|               | SACK#            | in/out | Acknowledge                 |  |  |
|               | SATN#            | in/out | Attention                   |  |  |
|               | SBSY#            | in/out | Busy                        |  |  |
|               | SCD#             | in/out | Command/data                |  |  |
|               | SDB[015]# in/out |        | Data lines                  |  |  |
| scsi          | SDBP[01]         | in/out | Data parity                 |  |  |
| •             | SIO#             | in/out | Input/output                |  |  |
|               | SMSG#            | in/out | Message                     |  |  |
|               | SREQ#            | in/out | Request                     |  |  |
|               | SRST#            | in/out | Bus reset                   |  |  |
|               | SSEL#            | in/out | Select device               |  |  |
|               | TERMPWR          | power  | Termination power           |  |  |
|               | CTS1             | in     | COM1 clear to send          |  |  |
| COM1          | RTS1             | out    | COM1 request to send        |  |  |
| 00            | RxD1             | in     | COM1 receive data           |  |  |
|               | TxD1             | out    | COM1 transmit data          |  |  |

Table 21. Signal Mnemonics of VMEbus Rear I/O Connector P2

. . . . . . . . . . . . . . . . .

|      | Signal    | Direction | Function                 |  |
|------|-----------|-----------|--------------------------|--|
|      | CTS2      | in        | COM2 clear to send       |  |
| COM2 | RTS2      | out       | COM2 request to send     |  |
| S    | RxD2      | in        | COM2 receive data        |  |
|      | TxD2      | out       | COM2 transmit data       |  |
|      | CTS3      | in        | COM3 clear to send       |  |
|      | DCD3      | in        | COM3 data carrier detect |  |
| COM3 | DTR3      | out       | COM3 data terminal ready |  |
| S    | RTS3      | out       | COM3 request to send     |  |
|      | RxD3 in   |           | COM3 receive data        |  |
|      | TxD3      | out       | COM3 transmit data       |  |
|      | CTS4      | in        | COM4 clear to send       |  |
|      | DCD4 in   |           | COM4 data carrier detect |  |
|      | DTR4 out  |           | COM4 data terminal ready |  |
| COM4 | RTS4 out  |           | COM4 request to send     |  |
| S    | RTxC4     | in        | COM4 receive clock       |  |
|      | RxD4      | in        | COM4 receive data        |  |
|      | TRxC4 out |           | COM4 transmit clock      |  |
|      | TxD4      | out       | COM4 transmit data       |  |


# 2.21.2.3 Connecting a Rear I/O Adapter to P2

You can connect a rear I/O adapter to the VMEbus P2 connector of the A11 through a VMEbus backplane. Adapters with a 3-row VMEbus connector can also be connected directly to P2. See MEN's website for I/O adapters available from MEN.

The following functions are accessible at the rear:

- Ethernet (10Base-5)
- 8-bit/narrow and 16-bit/wide SCSI
- COM1/COM2 interfaces (TTL signal level)
- COM3/COM4 asynchronous/synchronous UARTs
- Enhanced Parallel Port (LPT)

#### Figure 12. Connection of a Rear I/O Adapter (e.g. MEN's AD39)

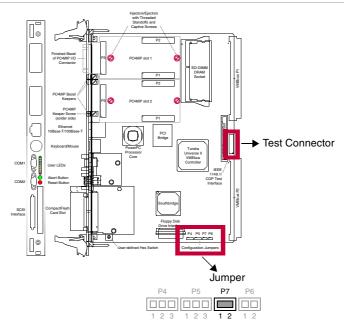


# 2.22 IEEE 1149.1 (JTAG)/COP Test Interface

The A11 provides IEEE 1149.1 and COP functions for facilitating board testing and chip debug. The IEEE 1149.1 test interface provides a means for boundary-scan testing of the PowerPC CPU and the board to which it is attached. The COP function shares the IEEE 1149.1 test port, provides a means for executing test routines, and facilitates chip and software debugging.

Connector types:

- Two 8-pin plugs, 2.54mm pitch, square pins  $\emptyset$  0.635mm gold
- Mating connector:


Two 8-pin receptacles, high-precision, 2.54mm pitch, for square pins  $\emptyset$  0.635mm gold, 6.9mm height


| 16 | GND  | 15 | CHKSTP |
|----|------|----|--------|
| 14 | -    | 13 | HRESET |
| 12 | GND  | 11 | SRESET |
| 10 | -    | 9  | TMS    |
| 8  | -    | 7  | ТСК    |
| 6  | VCC  | 5  | HALTED |
| 4  | TRST | 4  | TDI    |
| 2  | -    | 1  | TDO    |

Table 22. Pin Assignment of the 16-pin IEEE 1149.1 Test Connector

#### Configuring the IEEE 1149.1 Test Interface 2.22.1

To use the IEEE 1149.1 test interface, install jumper P7. For normal operation of the A11, you **must** remove jumper P7.





#### 2.22.2 **Configuring the COP Test Interface**

To use the COP test interface, you need to change three resistors on the A11's bottom side as shown in the following figure.

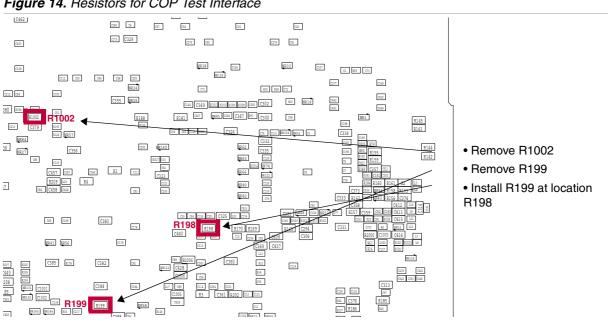



Figure 14. Resistors for COP Test Interface

# 3 MENMON

#### 3.1 General

MENMON is an assembly-language debugger with a simple user console interface and can easily be extended and ported.

MENMON for A11 also uses some parts of Motorola's DINK32 and provides extensions for user interface, configuration, debugging and self test.

#### Purpose

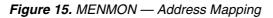
- Debugging applications without any operating system
- Bootstrapping operating systems
- Hardware testing

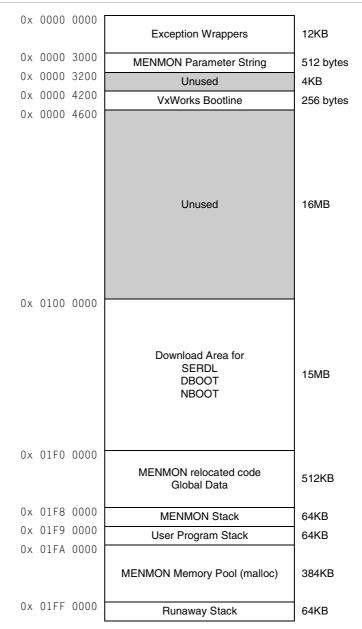
#### Features

- Auto-configuration for PCI devices on the board and devices on secondary PCI buses
- Interrupt routing of all on-board devices and of all devices on secondary PCI buses
- SDRAM size detection, reading and checking (Serial Presence Detect Data Structure)
- 8/16MB Flash programming with password protection of MENMON spaces
- Provides user interface through VGA & PS/2 keyboard
- Primary/secondary MENMON
- VME setup (A16, A24, A32, D16, D32) master
- VME master access ranges with fixed mapping
- VME bus error handling
- New in MENMON 3.0: CD-ROM boot (El Torito Specification and Pseudo Partition Tables)
- Subset of Motorola PPCBug system calls implemented

#### 3.2 Console

MENMON for A11 can communicate either through the serial console or through VGA display & PS/2 keyboard.


The VGA console is used if


- the hex switch is set to between 4 and 7 and
- a VGA adapter could be found and
- a PS/2 keyboard could be found.

Currently, the A11 supports MEN's P1 PC•MIP module (either with the SMI910 or SMI710 chip). VGA console operates in standard VGA mode (i.e. 640x480 pixels, white on black, 60 Hz).

PS/2 keyboard should have either a US or German keyboard layout. The layout can be selected using MENMON command EE-KMAP.

# 3.3 A11 MENMON Memory Map





#### *MEN Mikro Elektronik GmbH* 20A011-00 E4 - 2004-04-20

# 3.4 MENMON Start-up

#### 3.4.1 User LEDs

There are four user LEDs at the front panel. The LEDs display the state of the boot like a counter.



The exact sequence of the LEDs, i.e. when each LED will light, depends on the MENMON version. If you have any problems during start-up, please turn to MEN's support at support@men.de and give your MENMON version.

### 3.4.2 Boot Sequence

The assembler part of MENMON initializes the CPU and the MPC106 (memory interface), and the monitor will be relocated to the main memory.

All known devices will be initialized.

The primary MENMON looks for a valid secondary MENMON and starts it unless the ABORT button is pressed. ("Valid" means the size is between  $0 \times 0000$  and  $0 \times 80000$  and the checksum is valid.)

If you press the ABORT button for more than five seconds, the MENMON settings in the EEPROM are restored with default values.

MENMON checks whether there is a valid "startup" string stored in EEPROM. If valid, all commands in the "startup" string are executed. (See Chapter 3.4.3 Configuring the MENMON Start-up Procedure on page 59.)

If no startup string was present, MENMON jumps to the operating system bootstrapper whose address can be configured using the EE-BS command.

# 3.4.3 Configuring the MENMON Start-up Procedure

MENMON can be configured to automatically execute commands at start-up, for example to boot from disk. The EE-STARTUP command can be used to configure these commands. The EEPROM stores a string (max. 79 characters) that is comprised of commands that are executed at startup, e.g:

DBOOT 1 FILE=MYBOOT; NBOOT

MENMON performs these commands until one of the commands passes control to a loaded image.

The "EE-STARTUP -" command can be used to deactivate autoexecution of the string. When the string is inactive, MENMON calls its BO command at start-up.

### 3.4.4 Self Tests

At start-up the monitor runs self tests depending on the current self test level. (OFF, QUICK or EXTENDED). The MENMON behavior depends on the current stop on error mode (NO HOLD or HOLD).

Figure 16. MENMON — Power On Self Test Output with Self Test Message Mode EXTENDED

| press 'ESC' to setup/MENMON<br>Selftest running |                             |  |  |  |  |
|-------------------------------------------------|-----------------------------|--|--|--|--|
| serrese running                                 | === RTC ===                 |  |  |  |  |
| RTC                                             | ==> 0K                      |  |  |  |  |
|                                                 | === PCI ===                 |  |  |  |  |
| MPC106                                          | DEV 0 ==> 0K                |  |  |  |  |
| SYM53C895                                       | DEV C ==> OK                |  |  |  |  |
| UNIVERS II                                      | DEV D ==> OK                |  |  |  |  |
| DEC21143                                        | DEV E ==> OK                |  |  |  |  |
| DEC21150                                        | DEV 10 ==> OK               |  |  |  |  |
| ALI1543 PCI2ISA                                 | DEV 12 ==> OK               |  |  |  |  |
| ALI1543 IDE                                     | DEV 1B ==> OK               |  |  |  |  |
| ALI1543 PMU                                     | DEV 1C ==> OK               |  |  |  |  |
| PCM EXPANSION                                   | BUS 2 DEV X ==> NOT FOUND   |  |  |  |  |
| PCMIP I                                         | BUS 1 DEV 0 $==>$ NOT FOUND |  |  |  |  |
| PCMIP II                                        | BUS 1 DEV 1 $==>$ NOT FOUND |  |  |  |  |
|                                                 | === SMB ===                 |  |  |  |  |
| LM78                                            | ==> ERROR ***               |  |  |  |  |
| SROM                                            | ==> 0K                      |  |  |  |  |
| Z8536 SCL/SDA                                   | ==> 0K                      |  |  |  |  |
|                                                 | === HEX ===                 |  |  |  |  |
| GPI O                                           | ==> 0                       |  |  |  |  |
| DOCK                                            | ==> 1                       |  |  |  |  |
| GPI 2                                           | ==> 1                       |  |  |  |  |
| GPI 3                                           | ==> 1                       |  |  |  |  |
| HEX-SW                                          | ==> 0x1 0K                  |  |  |  |  |
|                                                 | === FLASH ===               |  |  |  |  |
| CHECKSUM                                        | ==> 0K                      |  |  |  |  |
| *** ERROR at selftes                            | t                           |  |  |  |  |

# 3.4.4.1 Self Tests in Detail

# RTC

The RTC test is non-destructive. It writes and compares the RTC NVRAM.

### PCI

This test scans the PCI bus with configuration cycles for on-board PCI devices. PC•MIPs will only be displayed if the configuration access is successful.

### SMB

This test performs read accesses to all on-board SMB devices. It toggles the Z8536 SMB port pins SDA and SCL and detects "stuck at high" and "stuck at low" faults.

#### **HEX Switch**

This test reads and displays the current hex switch position.

### **MENMON Flash Checksum**

This test checks the checksum of the current MENMON (primary/secondary). The first long word of MENMON contains the size, the second long word contains the expected checksum. The test computes the checksum by XORing each long word of MENMON with the next one, except for the first two long words.

### **ABORT Button**

This test checks pressing and releasing of the ABORT button to test the port pin of the Z8536.

The test is not performed during Power On Self Test.

This test does not check the ABORT interrupt.

# CPU

This test enters and displays the A11 clock configuration.

The test is not performed during Power On Self Test.

An error is detected for unknown PLL configuration for the installed CPU type.

# 3.5 MENMON Boot Methods for Client Programs

MENMON supports different methods to load and start client programs like operating systems or their bootstappers:

- Disk boot
- Network boot
- Tape boot
- Execution from Flash.

### 3.5.1 MENMON BIOS Devices

For disk and network Boot, MENMON supports several device tables. At the lowest level there is the **controller device**, an instantation of a controller driver. For example the SCSI controller is a controller device. Each controller device is assigned a **Controller Logical Unit Number** (CLUN), to refer to the controller device. The controller device table is built only at startup of the CPU and is never changed at runtime.

On the next level there are high-level **devices**. For example, an IDE or SCSI hard disk would be called a device by the MENMON BIOS. Each device is assigned a **Device Logical Unit Number** (DLUN) that is unique for the controller. The MENMON device table is built dynamically on request (entries are added by the IOI or DBOOT command, for example).

The **IOI** command can be used to display the CLUNs and DLUNs known by MENMON. **IOIN** just displays the currently known devices while **IOI** will search for devices behind each controller.

#### Example

MenMon> IOIN ====== [ Controller Dev Table ] ======= CLUN Driver param1 param2 param3 Handle 0x00 IDE 0x000001F0 0x000003F6 0x0000000 0x000FFCE0 0x01 NCR 8xx 0xF0002000 0x0000000 0x0000000 0x000FFC90 0x02 FDC 765 0x800003F0 0x0000000 0x0000000 0x000FFC10 0x03 Etherboot 0x81009000 0xF0001000 0x00000E00 0x0000000 ====== [ Device Table ] ======== CLUN DLUN Device Туре Handle 0x00 0x00 SunDisk SDCFB-20 IDE HD 0x000FFCA0 0x01 0x00 IBM DDRS-34560D SCSI HD 0x000FFC50 0x02 0x00 Std FDC Floppy Std Floppy 0x000FFC10

# 3.5.1.1 Controller Devices (CLUNs)

On startup, MENMON searches for all known onboard controllers (CLUN  $0 \times 00..0 \times 0F$ ) and for any other PCI device that is supported by the MENMON drivers. If additional controllers are found on the PCI bus, they receive CLUNs  $\geq 0 \times 10$ .

| CLUN    | Controller                                                         |  |  |
|---------|--------------------------------------------------------------------|--|--|
| 0x00    | Primary IDE controller in ALI                                      |  |  |
| 0x01    | Onboard SCSI controller NCR 53C8xx                                 |  |  |
| 0x02    | Floppy disk controller 765                                         |  |  |
| 0x03    | Onboard Ethernet controller DEC21143                               |  |  |
| 0x100FE | Any other controller found that is supported by the MENMON drivers |  |  |

Table 23. MENMON — Assignment for A11 Controller Devices

# 3.5.1.2 High Level Devices (DLUNs)

Depending on the bus type, the DLUN is assigned differently:

#### **Device LUNs (8-bit value)**

For **IDE** devices:

| 70                      |
|-------------------------|
| 0 = Master<br>1 = Slave |

For SCSI devices:

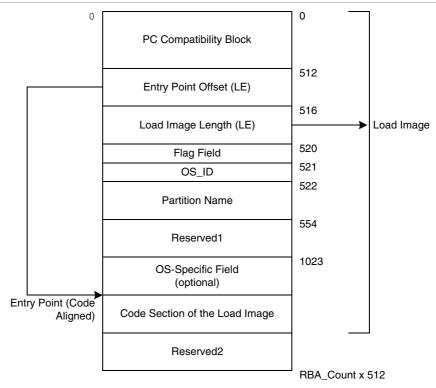
| 74      | 30                    |  |
|---------|-----------------------|--|
| SCSI ID | SCSI LUN (normally 0) |  |

Example: A SCSI hard disk with ID 6 would have a DLUN of  $0 \times 60$ .

For **FDC floppy** devices, the DLUN is not used and should always be  $0 \times 00$ .

# 3.5.2 Disk Boot

Disk boot supports the following:


- Boot from any disk-like device: SCSI hard and floppy disks, SCSI CD-ROMs, IDE hard disks or CompactFlash, FDC floppy
- Supports PReP and DOS disk partitions as well as unpartitioned media
- On CD-ROMs: Supports bootable CD-ROMs conforming to the "El Torito Specification" as well as CD-ROMs containing a pseudo DOS-Partition Table and PReP partitions.
- Supported file formats: RAW, ELF and PReP

To be able to boot from disk media, each medium must be prepared in the following way:

#### Partitions

Hard disks can have a partition table. MENMON supports the four partition entries in the first sector of the medium. The partition type must be either DOS (Type  $0 \times 01$ ,  $0 \times 04$ ,  $0 \times 06$ ) or PReP (Type  $0 \times 41$ ).

Figure 17. MENMON — Layout of the 0x41-Type Partition (PReP)

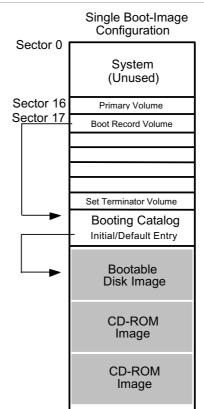


#### **File System**

With DOS-formatted partitions (or unpartitioned media) the file system must be a DOS FAT file system (12-bit or 16-bit FAT entries).

PReP (Type  $0 \times 41$ ) partitions have no file system, the entire partition is viewed as a single file (no file name is required).

#### **CD-ROM File System**


Two types of file systems are supported:

#### 1. El Torito Specification

A standard from Phoenix and IBM that is used on PCs to boot from CD-ROMs.

An El Torito CD-ROM comprises (at least) two volumes: an ISO9660 compatible volume and one volume containing a disk image of a bootable floppy or hard disk.

Figure 18. MENMON — Single Boot-Image CD-ROM Configuration



When MENMON detects such a CD-ROM format, it handles the contained bootable disk image like a standard hard or floppy disk, i. e. the same boot algorithm is performed as for normal floppy and hard disks.

#### 2. Pseudo Partition Table

Some OS-vendors (LynxOS) use the first (normally reserved) sector of a CD-ROM for a partition table that is normally contained on hard disks only. This partition table will then contain only one partition of type  $0 \times 41$  (PReP). The PReP file is then loaded just as from a hard disk.

Note: The logical sector numbers and sector counts within the partition table must be in units of 512 byte sectors (even if the CD-ROM has 2048 byte sectors).

### 3.5.2.1 DBOOT Algorithm

The DBOOT command tries to find a bootable partition or file on any disk. If no parameters are specified, DBOOT will search for devices behind each known CLUN. On each disk found, it will check if there is a partition table on it, and checks with each partition if it is bootable or not.

Any PReP partition found is assumed to be bootable.

For DOS partitions, DBOOT searches if the DOS file system contains the specified file. The file name to be searched for can be configured in the EEPROM using the EE-BOOTFILE (or EE-VXBLINE) command. Only the file-name part of that name is used (e. g. if you configure EE-BOOTFILE /ata0/vxworks, then DBOOT looks for "vxworks").

The file name can also be passed to the command line to DBOOT (e. g. *DBOOT file=myboot*).

If no file name is configured in EEPROM and no file-name argument is passed to DBOOT, the filename defaults to "BOOTFILE".

# 3.5.2.2 Loading the Boot File

Once a bootable device/partition has been found, the DBOOT command starts to load the file. Regardless of the file format, the entire boot file will be loaded to MENMON's **download area** ( $0 \times 01000000$ ). (This address can be overridden using the LOAD parameter.) The load address **must not** be between  $0 \times 01F00000$  and  $0 \times 01FFFFFF$ .

# 3.5.2.3 Starting the Loaded Program

RAW and PReP files will be executed at the load address.

For **RAW** files, the entry point, relative to the load address, can be specified through the START parameter to the DBOOT command. (The default start offset is 0, i.e. the program execution begins at the load address.)

**PReP** files begin with a header, which contains the entry point of the program. The START parameter will be ignored in this case.

**ELF** files will not be executed at the load address. Instead MENMON analyzes the ELF program header and sections, and the program sections will be relocated as specified in the ELF file. Here, the relocation address may be any address in RAM except the **runaway stack** and the load image itself. Only the physical address entries in the ELF program headers are used, virtual addresses are treated as physical addresses if the physical address entry is  $0 \times FFFFFFF$ .

#### **Client Program Calling Conventions**

- Interrupts are disabled (MSR.EE is cleared).
- CPU is in Big Endian Mode.
- MMU is enabled. BATs are set up.
- Instruction Cache is enabled (L1 only).
- R1 is set to the top of runaway stack 512 bytes.
- R3 is set to 0 (no residual data available).
- R4 is set to the image loading address. (Not the relocation address!)
- R5..R7 are cleared.

# 3.5.2.4 Using the DBOOT Command

| Syntax     | DBOOT | [clun] [dlun] [PART=part] [FILE=file] [LOAD=addr]                                                                                                                                                                                              |
|------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |       | =off] [HALT=n]                                                                                                                                                                                                                                 |
| Parameters | clun  | Controller logical unit. If missing, DBOOT loops through all known controllers.                                                                                                                                                                |
|            | dlun  | Device logical unit. If missing, DBOOT automatically searches for devices.                                                                                                                                                                     |
|            | PART  | Partition number [14]. If missing, DBOOT loops through all partitions.                                                                                                                                                                         |
|            | FILE  | File name. Used when booting from a DOS FAT file system.<br>The file must be present in the file system's root directory. If<br>FILE is missing, the name "BOOTFILE" is used. The file<br>name is ignored when booting from Type41 partitions. |
|            | LOAD  | Specifies the load address. This is the address where the entire image of the file is first loaded, regardless of the file format. If not specified, the <i>download area</i> is used.                                                         |
|            | START | Specifies the entry point of the loaded program relative to<br>its load address. Only used for RAW files. If START is not<br>present, the entry point is equal to the load address.                                                            |
|            | HALT  | If this parameter is '1', MENMON is called again when the<br>boot file was loaded. If this parameter is '2', MENMON is<br>called when the load image was relocated, right after the<br>first instruction of the program was executed.          |
|            |       |                                                                                                                                                                                                                                                |

#### Examples

• Load PReP boot from second partition of CompactFlash:

DBOOT 0 0 PART=2

- Load file *MYBOOT* from SCSI hard disk with ID 2: DBOOT 1 20 FILE=MYBOOT
- Try to find a bootable device on the SCSI bus: DBOOT 1

#### • Boot VxWorks from ATA:

MenMon> ee-vxbline

```
'.' = clear field; '-' = go to previous field; ^D = quit
boot device
                     :ata=0,0
processor number
                     :0
host name
                     :host
                      :/ata0/vxworks
file name
inet on ethernet (e) :192.1.1.28
inet on backplane (b) :
host inet (h)
                     :192.1.1.22
gateway inet (g)
                      :
user (u)
ftp password (pw) (blank = use rsh):
flags (f)
                    :0x0
target name (tn)
                      :
startup script (s)
                      :
other (o)
                      :
Updating EEPROM..
MenMon> DBOOT 0
```

#### Hints

- Use the LS command to display the partition table and files on the device.
- In case of problems you can try to read raw sectors from disk using the DSKRD command.
- Use the EE-STARTUP command to perform the DBOOT command automatically at startup.

### 3.5.3 Network Boot

Network boot supports the following:

- Boot a file using BOOTP and TFTP protocols via Ethernet
- Boot a file using TFTP only (without BOOTP)
- Supported file formats: RAW, ELF and PReP

This boot method requires a host computer running the TCP/IP daemons *tftpd* and optionally *bootp*. If you intend to boot via BOOTP, the host computer must also set up a table (usually called *bootptab*) containing an entry for each target system to be booted.

An entry in *bootptab* for A11 could look like this:

```
mysystem:sm=255.255.255.0:\
hd=/usr/TFTPB00T:\
bs:ht=ether:vm=rfc1048:\
ha=00c03a080003:\
ip=192.1.1.25:\
bf=mybootfile
```

At start-up, MENMON searches for the first available (and supported) Ethernet controller in the system. When the NBOOT command is issued, MENMON uses that controller (unless the CLUN parameter is specified) to send its BOOTP broadcast. The BOOTP server will respond with a packet containing the target's IP address, home directory and boot file. Now MENMON will fetch the specified file using the TFTP protocol.

However you can also boot through TFTP only. In this case, you must configure some parameters in the EEPROM. These parameters can be configured using either EE-VXBLINE or the EE-NETxxx parameters.

#### **Example of Booting a Specified File**

```
MenMon> ee-netip 192.1.1.28
MenMon> ee-nethost 192.1.1.22
MenMon> ee-bootfile /FWARE/PPC/MENMON/PORTS/A11/BIN/menmon.rom
MenMon> nboot tftp
Probing...[Tulip] Tulip 00:C0:3A:08:00:17 at membase = 0xF0001000
Performing ethernet autonegotiation (V2)...100BaseTx FD
Etherboot/32 version 4.2.5b for [Tulip]
My IP 192.1.1.28, Netmask=0xFFFFFF00 Server IP 192.1.1.22, GW IP
0.0.0.0
Loading /FWARE/PPC/MENMON/PORTS/A11/BIN/menmon.rom...
to 0x0100000 352 kB
Loaded 0x000580DC bytes
Starting RAW-file
```

As with the DBOOT command, the entire boot file will be loaded to MENMON's *download area* if not otherwise specified. Once the boot file has been loaded, the file is interpreted, relocated and executed in the same way as described for the DBOOT command. (See Chapter 3.5.2.3 Starting the Loaded Program on page 67.)

#### **Client Program Calling Conventions**

See Chapter Client Program Calling Conventions on page 67.

#### 3.5.3.1 Using the NBOOT Command

| Syntax                             | NBOOT [BOOTP=??] [TFTP=??] [CLUN= <i>clun</i> ] [FILE= <i>file</i> ]<br>[LOAD=addr] [START=addr] [HALT=n]     |                                                                                                                                                                                                                     |  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameters                         | -                                                                                                             | (Default) Obtain IP address from BOOTP server. Then boot via TFTP.                                                                                                                                                  |  |
|                                    | TFTP                                                                                                          | Use TFTP method only. Use parameters specified by EE-<br>NETxx commands.                                                                                                                                            |  |
|                                    | CLUN Specifies the controller that should be used for boot. If CLUN is not present, the first available used. |                                                                                                                                                                                                                     |  |
| not present, th<br>server (using t |                                                                                                               | File name to be sent within the BOOTP request. If FILE is<br>not present, the file name must be provided by the BOOTP<br>server (using the "bf" tag). A file name from the BOOTP<br>server always takes precedence. |  |
|                                    | LOAD See Chapter 3.5.2.4 Using the DBOOT (                                                                    |                                                                                                                                                                                                                     |  |
|                                    |                                                                                                               | See Chapter 3.5.2.4 Using the DBOOT Command on page 68                                                                                                                                                              |  |
|                                    | HALT                                                                                                          | See Chapter 3.5.2.4 Using the DBOOT Command on page 68                                                                                                                                                              |  |

#### 3.5.3.2 **Ethernet Medium Selection**

MENMON currently supports Ethernet controllers using the DEC21xxx chips. These chips can be found onboard the A11, on the P3 and P12 PC•MIP mezzanines and on some other PCI hardware.

The medium to be used (10Mbit or 100Mbit, full duplex or half duplex) is stored in the SROM that is connected to the DEC chip. Normally, "Autoselect" is stored here, so MENMON will attempt to select the Ethernet medium automatically.

MENMON's DEC21MEDIA command can be used to display or to change the current medium selection.

#### 3.5.4 **MENMON** Tape Boot

MENMON also supports booting from any SCSI tape device ("streamer").

The booting process is very easy. The TBOOT command searches for a tape device, rewinds the tape and loads all data from the tape until a file mark or end-of-tape mark is encountered.

The loaded data is then analyzed and started as usual (see Chapter Client Program Calling Conventions on page 67).

# 3.6 Updating Flash Devices

MENMON provides the possibility of updating Flash and disk devices on the A11 via the serial console interface or via Ethernet.

## 3.6.1 Download via Serial Interface

In order to program Flash or disk devices, you need to send a file from a host computer to the target. On the host computer, you need a terminal emulation program such as HyperTerm or Minicom.

The download file name extension determines the destination device and the offset within that device. For example, a file named *myfile.f00* will be programmed into Flash sector 0.

| Device Abbreviation | Flash Device               | Sector Size                                                    |
|---------------------|----------------------------|----------------------------------------------------------------|
| F                   | Flash                      | See Table 25, MENMON<br>— Flash Sectors for 8MB,<br>on page 73 |
| E                   | Serial EEPROM <sup>1</sup> | 1 byte                                                         |
| D                   | SDRAM                      | 2 bytes                                                        |
| С                   | IDE (CompactFlash)         | 512 bytes                                                      |
| S                   | SCSI ID0                   | Sector size from drive                                         |

Table 24. MENMON — Download Destination Devices

<sup>1</sup> If you want to program the EEPROM and use the file extension to specify the start address, note that the highest start address you can state is  $0 \times 63$  (with extension *.E99*).

Two special extensions have been introduced in MENMON 3.0:

- *xxx.PMM* is an alias for .F28 and updates the primary MENMON.
- *xxx.SMM* is an alias for .F30 and updates the secondary MENMON.

When a file is larger than one sector, the following sector of the device will also be programmed.

The update file is transferred to DRAM before being programmed to Flash. The DRAM of the A11 must therefore be large enough for the entire download file. The update file may be max. 15MB.

#### Table 25. MENMON — Flash Sectors for 8MB

| Flash Sector             | Address  |
|--------------------------|----------|
| 0                        | 0x00000  |
| 1                        | 0x040000 |
| 2                        | 0x080000 |
| (Sector offset 0x040000) | ·        |
| 32                       | 0x7E0000 |
| 33                       | 0x7E8000 |
| 34                       | 0x7F0000 |

Table 26. MENMON — Flash Sectors for 16MB

| Flash Sector             | Address  | Bank |
|--------------------------|----------|------|
| 0                        | 0×000000 | 0    |
| 1                        | 0×040000 |      |
| 2                        | 0x080000 |      |
| (Sector offset 0x040000) | <b>I</b> |      |
| 32                       | 0×7E0000 |      |
| 33                       | 0x7E8000 |      |
| 34                       | 0x7F0000 |      |
| 35                       | 0×800000 | 1    |
| 36                       | 0×840000 |      |
| 37                       | 0x880000 |      |
| (Sector offset 0x040000) |          |      |
| 66                       | 0×FE0000 |      |
| 67                       | 0×FE8000 |      |
| 68                       | 0×FF0000 |      |

### 3.6.2 Performing the Download

You must connect your host to A11's COM1 interface.

Before you start the download, change the MENMON console baudrate to 115,200 baud (enter *EE-BAUD 115200* and reset A11).

To start download enter *SERDL* in the MENMON command line. You must specify a password if you want to update the primary MENMON, secondary MENMON or disk devices:

- SERDL PMENMON for primary MENMON
- SERDL MENMON for secondary MENMON
- *SERDL DISK* for disk devices, no file system support (RAW only)

### 3.6.3 Update from Disk or Network

It is also possible to program Flash with a file from a disk or network:

 $\blacksquare$  Load the file into memory:

DBOOT HALT=1 *or* NBOOT HALT=1

☑ Program the Flash (in this case OS bootstrapper):

PFLASH F 0 100000

This programs the first Mbyte of Flash.

## 3.7 MENMON User Interface

#### 3.7.1 Command Line Editing

MENMON provides a rudimentary command line editor:

| <ctrl> <h></h></ctrl> | Backspace and delete previous character |
|-----------------------|-----------------------------------------|
| <ctrl> <x></x></ctrl> | Delete whole line                       |
| <ctrl> <a></a></ctrl> | Retrieve last line                      |

#### 3.7.2 Numerical Arguments

Most MENMON commands require one or more arguments. Numerical arguments may be numbers or simple expressions:

| <num></num>    | num is interpreted as a hexadecimal value |
|----------------|-------------------------------------------|
| \$ <num></num> | Same as above                             |
| # <num></num>  | num is interpreted as a decimal value     |
| % <num></num>  | num is interpreted as a binary value      |
| . <reg></reg>  | Use the value of register <reg></reg>     |

These arguments can be combined using the arithmetic operators "+" and "-".

#### Example:<sup>1</sup>

MenMon> D 10000 Dumps address 0x10000

<sup>&</sup>lt;sup>1</sup> Some of the addresses used in our examples may not be suitable for your board's address mapping. If you want to try out MENMON's functions, please compare the example addresses with your mapping first!

# 3.7.3 MENMON Command Overview

Table 27. MENMON — Command Overview

. . . . . . . . . . . . . . . .

| Command                                                | Description                        |  |  |
|--------------------------------------------------------|------------------------------------|--|--|
| н                                                      | Print help                         |  |  |
| IOI                                                    | Scan for BIOS devices              |  |  |
| NBOOT [ <opts>]</opts>                                 | Boot from network                  |  |  |
| DEC21MEDIA <clun> <med></med></clun>                   | Select Ethernet medium             |  |  |
| DBOOT [ <clun>] [<dlun>] [<opts>]</opts></dlun></clun> | Boot from disk                     |  |  |
| TBOOT [ <clun>] [<dlun>] [<opts>]</opts></dlun></clun> | Boot from tape                     |  |  |
| LS <clun> <dlun> [<opts>]</opts></dlun></clun>         | List files/partitions on device    |  |  |
| DSKRD <args></args>                                    | Read blocks from RAW disk          |  |  |
| DSKWR <args></args>                                    | Write blocks to RAW disk           |  |  |
| BIOS_DBG <mask></mask>                                 | Set MMBIOS debug level             |  |  |
| I [ <d>]</d>                                           | List A11 information               |  |  |
| EE[-xxx] [ <arg>]</arg>                                | Serial EEPROM commands             |  |  |
| VME[-xxx] [ <arg>]</arg>                               | VME contr. parameters in EEPROM    |  |  |
| DIAG [ <arg>]</arg>                                    | System diagnosis                   |  |  |
| SERDL [ <passwd>]</passwd>                             | Update Flash using YModem protocol |  |  |
| ERASE <d> [<o>] [<s>]</s></o></d>                      | Erase Flash sectors                |  |  |
| PFLASH <d> <o> <s> [<a>]</a></s></o></d>               | Program Flash                      |  |  |
| AS <addr> [<cnt>]</cnt></addr>                         | Assemble memory                    |  |  |
| DI [ <addr>] [<cnt>]</cnt></addr>                      | Disassemble memory                 |  |  |
| GO [ <addr>]</addr>                                    | Jump to user program               |  |  |
| S[RFO-] [ <addr>]</addr>                               | Single step                        |  |  |
| BO [ <addr>]</addr>                                    | Call OS bootstrapper               |  |  |
| B[DC#] [ <addr>]</addr>                                | Set/display/clear breakpoints      |  |  |
| .C[RFM] name                                           | CPU User Register Change           |  |  |
| .[RFM?] [name]                                         | CPU User Register Display          |  |  |
| C[BWLN#] <expr></expr>                                 | Change memory                      |  |  |
| D [ <addr>] [<cnt>]</cnt></addr>                       | Dump memory                        |  |  |
| FI <from> <to> <val></val></to></from>                 | Fill memory (byte)                 |  |  |
| MC <adr1> <adr2> <cnt></cnt></adr2></adr1>             | Compare memory                     |  |  |
| MO <from> <to> <cnt></cnt></to></from>                 | Move (copy) memory                 |  |  |
| MS <from> <to> <val></val></to></from>                 | Search pattern in memory           |  |  |
| MT[BWLFD] <from> <to></to></from>                      | Memory test                        |  |  |
| PCID[+] <devno> [<busno>]</busno></devno>              | PCI config register dump           |  |  |
| PCIC <devno> <addr> [<busno>]</busno></addr></devno>   | PCI config register change         |  |  |
| PCIR                                                   | List PCI resources                 |  |  |

. . . . . . . . . . . . . . . .

| Command                                                        | Description                 |
|----------------------------------------------------------------|-----------------------------|
| PCI-VPD[-] <devno> [<busno>] [<capid>]</capid></busno></devno> | PCI Vital Product Data dump |
| PCI                                                            | PCI probe                   |
| RST                                                            | Reset board                 |

- - - - - -

- - - - - - - - -

# 3.8 Board Setup

## 3.8.1 ALI 1543

The PCI-to-ISA southbridge contains preconfigured and unconfigured Plug and Play devices.

MENMON enables and configures the following devices:

- COM1
- COM2
- Keyboard
- Mouse
- Floppy disk drive
- LPT
- Primary IDE
- DMA controller
- PMU
- SMB controller
- Programmable chip selects for Z8536 and Z85230

MENMON disables the following devices:

• USB

# 3.8.2 PCI Auto-Configuration

MENMON maps all detected PCI devices to PCI memory and PCI I/O space. PCI bus masters are enabled. PCI bus interrupts are routed and configured in configuration space.

The information command I displays the current PCI configuration:

```
MenMon> i d
men A11 Information
_____
*PCI
busNo devNo funcNo DEV ID VEN ID MEM MAPPED CFG REGS at
_____ _____ _____ _____ _____ ____
0x 0 0x 0 0x 0 0x0002 0x1057 not avail
0x 0 0x C 0x 0 0x000C 0x1000 0x80801000
0x 0 0x D 0x 0
                0x0000 0x10E3 0x80802000
0 x 0 0 x E 0 x 0
                0x0019 0x1011 0x80804000
0x 0 0x10 0x 0
                 0x0022 0x1011 0x80810000
0x 0 0x12 0x 0
                 0x1533 0x10B9 0x80840000
0x 0 0x1B 0x 0
                 0x5229 0x10B9
                               not avail
0x 0 0x1C 0x 0
                 0x7101 0x10B9
                               not avail
                0x0710 0x126F not avail
0x 1 0x 1 0x 0
NUMBER OF MAPPED PCI BUSSES => 1
PCI IO:
   START => 80003000
       => 8000EFFF
   END
   ALLOC => 80005000
PCI MEMORY:
   START => F000000
   END => FEFFFFF
   ALLOC => F200000
PCI INT ROUTING:
   INTA => 10
   INTB =>
           11
   INTC => 15
   INTD => 15
PCI BRIDGES:
   PrimBus DevNo SecBus
    _ _ _ _ .
      0x 0 0x10 0x 1
```

There are two new commands in MENMON 3.0 to control some features on the PCI bus.

- *EE-PCI-STGATH* Controls PCI store gathering of CPU->PCI cycles.
- *EE-PCI-SPECRD* Controls read prefetching of external master accesses to the system memory.

There are several commands available to show and modify PCI configuration:

- *PCI* Scans the entire bus hierarchy and displays the device and vendor ID of each device found.
- *PCIR* Shows the allocated PCI I/O and memory resources for each device.
- *PCID* Shows the entire PCI configuration space of the specified device.
- *PCIC* Allows you to change the values of any PCI config space register.
- PCI-VPD Shows the "vital product data" on devices that support it.
- Note: Since the A11 is running with PowerPC Address Map A, you must add 0x C000 0000 to any PCI memory address and 0x 8000 0000 to PCI I/O address in order to get the CPU's physical address!

# 3.8.3 VMEbus

#### 3.8.3.1 System Controller (Slot-1) Function

The slot-1 function (clock generation and arbiter) is enabled automatically when the A11 is plugged into slot 1 of the VME rack. Whether the function is enabled or not is displayed during MENMON's startup procedure:

Init VME Controller.. (Slot 1 function enabled)

#### 3.8.3.2 A11 as VMEbus Master

The VMEbus master and slave mapping can be displayed through command I.

**CPU Address VME Modifiers VME Space** VME Address 0x 8C00 0000 .. 8CFE FFFF 00 0000 .. FE FFFF Data, User A24/D16 0 x 0000 .. 0x 8CFF 0000 .. 8CFF FFFF A16/D16 0 x FFFF Data, User 0x 8D00 0000 FE FFFF .. 8DFE FFFF Data, Supervisor A24/D16 0 x 00 0000 . . 0000 .. FFFF Ox 8DFF 0000 .. 8DFF FFFF Data, Supervisor A16/D16 0 x 0x 8E00 0000 .. 8EFE FFFF Data, User A24/D32 0 x 00 0000 .. FΕ FFFF .. 8EFF FFFF FFFF 0x 8EFF 0000 Data, User A16/D32 0 x 0000 . . 0x 8F00 0000 .. 8FFE FFFF Data, Supervisor A24/D32 0 x 00 0000 FE FFFF . . 0x 8FFF 0000 .. 8FFF FFFF Data, Supervisor A16/D32 0 x 0000 FFFF . . .. C7FF FFFF 0x C100 0000 Data, Supervisor A32/D16 0x 0000 0000 .. 06FF FFFF .. CFFF FFFF 0x C800 0000 Data, User A32/D32 0x 0000 0000 •• 07FF FFFF

Table 28. MENMON — Address Map for A11 as a VMEbus Master<sup>1</sup>

The Tundra Universe II special PCI target image is mapped to the PCI I/O space. This image provides the A16 and A24 ranges.

The PCI target images 0 and 1 are mapped to PCI memory space. They provide 128MB A32 space each and are configured for coupled PCI transactions and no VMEbus block transfer.

The PCI target images 2 and 3 are reserved for user configuration, e. g. for higher transfer rates with decoupled PCI and VMEbus block transfers (see also Chapter 3.3 A11 MENMON Memory Map on page 58).

<sup>1</sup> In MENMON 2.2 this mapping has changed in the area from 0xC000000 to 0xC100000.

#### 3.8.3.3 A11 as a VMEbus Slave

By default, the VME slave interface of the A11 is disabled, i. e. no accesses are possible to the A11 by another VME master.

MENMON commands VME-xxx allow you to enable a VME A24 and/or a VME A32 window.

- VME-A24MA / VME-A24SA / VME-A24SIZE Control the A24 window.
- VME-A32MA / VME-A32SA / VME-A32SIZE Control the A32 window.

For example, to set up a 1MB window with A11 local address  $0\times 200000$  and VME A24 address  $0\times 800000$ , enter the following commands:

```
        MenMon>
        VME-A24SIZE 10
        In units of 64k blocks

        MenMon>
        VME-A24MA 200000
        MenMon>

        MenMon>
        VME-A24SA 80
        MenMon>
```

Note: Your operating system BSP may offer more flexible methods to enable slave windows!

#### 3.8.4 SCSI

There are three MENMON configuration commands that control the SCSI controller terminators:

• EE-SCSI-TERM8

Controls the terminator for SCSI bus signals D0..D7 and common control lines. It must be enabled when the A11 SCSI controller is at the end of the SCSI cable.

• EE-SCSI-TERM16

Controls the terminator for the upper half of SCSI bus (wide SCSI)

• EE-SCSI-DIFFSENSE

Controls wether the SCSI Diffsense signal is forced to low by a general purpose pin. You must force Diffsense to low whenever you have connected SCSI devices through the rear transition module.

#### 3.8.5 SDRAM DIMM Configuration

The configuration EEPROM will be read over the System Managment Bus. The monitor software checks the configuration data.

#### 3.8.6 Hex Switch

The hex switch is completely user-configurable. With MENMON it has only one function: at hex position "0" there will be a delay after each initialization step, so that the boot procedure is slowed down. This function is provided for diagnostic purposes. For normal operation of the board, you should set the hex switch to a position between "1" and "F".

If the hex switch is set between 4 and 7, the MENMON console can be redirected to VGA. See Chapter 3.2 Console on page 57.

| Setting | Description                                            |
|---------|--------------------------------------------------------|
| 0       | User defined, but delay after each initialization step |
| 1F      | User defined, no additional delay during boot          |
| 47      | VGA console                                            |

Table 29. MENMON — Hex-Switch Settings

### 3.9 MENMON System Calls

This chapter describes the MENMON System Call handler, which allows system calls from user programs. MENMON implements a small subset of the system calls implemented in Motorola's PPCBug. The implemented system calls are binary-compatible with PPCBug.

The system calls can be used to access selected functional routines contained within the debugger, including input and output routines. The System Call handler may also be used to transfer control to the debugger at the end of a user program.

### 3.9.1 Invoking System Calls

The System Call handler is accessible through the **SC** (system call) instruction, with exception vector  $0 \times 00000$  (System Call Exception). To invoke a system call from a user program, insert the following code into the source program. The code corresponding to the particular system routine is specified in register R10. Parameters are passed and returned in registers R3 to *R*n, where *n* is less than10.

ADDI R10,R0,*\$XXXX* SC

XXXX is the 16-bit code for the system call routine, and **SC** is the system call instruction (system call to the debugger). Register R10 is set to  $0 \times 0000XXXX$ .

# 3.9.2 System Calls

### 3.9.2.1 BRD\_ID

- - - - -

| Name                                       | BRD_ID - return pointer to board ID packet                                                                            |                                                                                                                                            |              |           |          |           |          |          |         |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|----------|-----------|----------|----------|---------|
| Code                                       | \$0070                                                                                                                |                                                                                                                                            |              |           |          |           |          |          |         |
| Description                                | This routine returns a pointer in R03 to the board identification packet. The packet is built at initialization time. |                                                                                                                                            |              |           |          |           |          |          |         |
|                                            | MENM                                                                                                                  | The format of the board identification packet is shown below.<br>MENMON only implements some fields of the original PPCBug<br>system call. |              |           |          |           |          |          |         |
|                                            | Table 3                                                                                                               | 30. MEI                                                                                                                                    | NMON         | — Syst    | em Cal   | ls — Bl   | RD_ID    | Fields   |         |
|                                            |                                                                                                                       | 31                                                                                                                                         | 24           | 23        | 16       | 15        | 8        | 7        | 0       |
|                                            | ØxØØ                                                                                                                  |                                                                                                                                            |              |           | Eye C    | atcher    |          |          |         |
|                                            | ØxØ4                                                                                                                  |                                                                                                                                            |              |           | Rese     | erved     |          |          |         |
|                                            | ØxØ8                                                                                                                  |                                                                                                                                            | Packe        | et Size   |          |           | Rese     | erved    |         |
|                                            | ØxØC                                                                                                                  |                                                                                                                                            |              |           | Rese     | erved     |          |          |         |
|                                            | Øx1Ø                                                                                                                  |                                                                                                                                            |              |           | Rese     | erved     |          |          |         |
|                                            | Øx14                                                                                                                  |                                                                                                                                            | CL           | UN        |          |           | DL       | UN       |         |
|                                            | Øx18                                                                                                                  |                                                                                                                                            |              |           | Rese     | erved     |          |          |         |
|                                            | Øx1C                                                                                                                  |                                                                                                                                            |              |           | Rese     | erved     |          |          |         |
|                                            | Eye Ca                                                                                                                | tcher                                                                                                                                      | Word         | contair   | ning AS  | CII strir | ng "BDI  | D"       |         |
|                                            | Packet                                                                                                                | Size                                                                                                                                       | Half-v       | vord co   | ntaining | g the siz | ze of th | e packe  | et      |
|                                            | CLUN                                                                                                                  |                                                                                                                                            | Logic<br>Ier | al Unit I | Numbe    | r for the | e boot d | levice c | ontrol- |
|                                            | DLUN                                                                                                                  |                                                                                                                                            | Logic        | al Unit I | Numbe    | r for the | e boot d | evice    |         |
| Entry<br>Conditions                        | -                                                                                                                     |                                                                                                                                            |              |           |          |           |          |          |         |
| Exit Conditions<br>different from<br>Entry | R03: Address Starting address of ID packet (word)                                                                     |                                                                                                                                            |              |           |          |           |          |          |         |

Note: *CLUN* and *DLUN* are initialized according to the device that was last booted (for example, DBOOT or NBOOT command).

# 3.9.2.2 OUT\_CHR

. . . . . . . . . . . . . .

| Name                                       | OUT_CHR - output character routine                           |
|--------------------------------------------|--------------------------------------------------------------|
| Code                                       | \$0020                                                       |
| Description                                | This routine outputs a character to the default output port. |
| Entry<br>Conditions                        | R03: Bits 7 Character (byte)<br>through 0                    |
| Exit Conditions<br>different from<br>Entry | Character is sent to the default I/O port.                   |

# 3.9.2.3 IN\_CHR

| Name                           | IN_CHR - input character routine                                                                          |
|--------------------------------|-----------------------------------------------------------------------------------------------------------|
| Code                           | \$0000                                                                                                    |
| Description                    | <i>IN_CHR</i> reads a character from the default input port. The character is returned in the LSB of R03. |
| Entry<br>Conditions            | -                                                                                                         |
| Exit Conditions different from | R03: Bits 7 through 0 contain the character returned<br>R03: Bits 31 through 8 are zero.                  |
| Entry                          |                                                                                                           |

# 3.9.2.4 IN\_STAT

| Name                              | IN_STAT - input serial port status routine                                                                                                  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Code                              | \$0001                                                                                                                                      |
| Description                       | <i>IN_STAT</i> is used to see if there are characters in the default input port buffer. R03 is set to indicate the result of the operation. |
| Entry<br>Conditions               | No arguments required                                                                                                                       |
| Exit Conditions<br>different from | R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if the receiver buffer is not empty.                                                                    |
| Entry                             | R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if the receiver buffer is empty.                                                                        |

- - - - - - - -

# 3.9.2.5 RTC\_RD

| Name                                       | RTC_RD - read the RTC registers |                                                                                                                                       |           |           |           |        |          |    |  |
|--------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|--------|----------|----|--|
| Code                                       | \$0053                          | \$0053                                                                                                                                |           |           |           |        |          |    |  |
| Description                                | data retu                       | RTC_RD is used to read the Real-Time Clock registers. The data returned is in packed BCD. MENMON implements only the second register. |           |           |           |        |          |    |  |
|                                            | The orde                        | The order of the data in the buffer is:                                                                                               |           |           |           |        |          |    |  |
|                                            | Table 3                         | Table 31. MENMON — System Calls — RTC_RD Buffer Data                                                                                  |           |           |           |        |          |    |  |
|                                            | 0                               | 0 0 0 0 0 0 S 0                                                                                                                       |           |           |           |        |          |    |  |
|                                            | Begin bu                        | Begin buffer Buffer + eight bytes                                                                                                     |           |           |           |        |          |    |  |
|                                            | S                               | Se                                                                                                                                    | conds (2  | 2 nibbles | s packed  | BCD)   |          |    |  |
| Entry<br>Conditions                        | R03: But                        | R03: Buffer address where RTC data is to be returned                                                                                  |           |           |           |        |          |    |  |
| Exit Conditions<br>different from<br>Entry | Buffer no                       | ow conta                                                                                                                              | ains date | e and tim | ne in pao | ked BC | D formai | t. |  |

- -

. . . . . . . . . . . .

# 3.9.2.6 DSK\_RD

|             | DSK_RD - disk read routine                        |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                                                       |                             |               |
|-------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|---------------|
| Code        | \$0010                                            |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                                                       |                             |               |
| Description | disk de<br>comma<br>(The us<br>address<br>The cor | This routine is used to read blocks of data from the specified<br>disk device. Information about the data transfer is passed in a<br>command packet which has been built somewhere in memory.<br>(The user program must first manually prepare the packet.) The<br>address of the packet is passed as an argument to the routine.<br>The command packet is eight half-words in length and is<br>arranged as follows: |                                                                                                                  |                                                       |                             |               |
|             | Table 3                                           | 82. MEN                                                                                                                                                                                                                                                                                                                                                                                                              | MON                                                                                                              | — System Cal                                          | ls — DSK_RD                 | ) Fields      |
|             |                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 8                                                     | 7                           | 0             |
|             | ØxØØ                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      | CL                                                                                                               | UN                                                    | DL                          | UN            |
|             | ØxØ2                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | Status H                                              | alf-Word                    |               |
|             | ØxØ4                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | Most Significa                                        | ant Half-Word               |               |
|             | ØxØ6                                              | IVI                                                                                                                                                                                                                                                                                                                                                                                                                  | Memory Address                                                                                                   |                                                       | Least Significant Half-Word |               |
|             | ØxØ8                                              | Block Number (Disk)<br>Number o<br>Flag Byte<br>Logical Unit Number<br>Logical Unit Number                                                                                                                                                                                                                                                                                                                           |                                                                                                                  | Most Significant Half-Word                            |                             |               |
|             | ØxØA                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | Least Significant Half-Word                           |                             |               |
|             | ØxØC                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | of Blocks                                             |                             |               |
|             | ØxØE                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | Address Modifier                                      |                             |               |
|             | CLUN                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | er (LUN) of cor                                       | ntroller to use             |               |
|             | DLUN                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | er (LUN) of dev                                       | vice to use                 |               |
|             | Status                                            |                                                                                                                                                                                                                                                                                                                                                                                                                      | This status half-wo<br>operation. It is zero<br>without errors.                                                  |                                                       |                             |               |
|             | Memor<br>Addres                                   |                                                                                                                                                                                                                                                                                                                                                                                                                      | Address of buffer in memory. Data is written starting at this address.                                           |                                                       |                             |               |
|             | Block N                                           | lumber                                                                                                                                                                                                                                                                                                                                                                                                               | For disk devices, this is the block number where<br>the transfer starts. Data is read starting at this<br>block. |                                                       |                             |               |
|             | Numbe<br>Blocks                                   | r of                                                                                                                                                                                                                                                                                                                                                                                                                 | strea                                                                                                            | number of bloc<br>ming tape dev<br>s transferred i    | ices, the actua             | al number of  |
|             | Flag By                                           | rte                                                                                                                                                                                                                                                                                                                                                                                                                  | Not implemented by MENMON                                                                                        |                                                       |                             |               |
|             | Addres<br>fier                                    | s Modi-                                                                                                                                                                                                                                                                                                                                                                                                              | ring                                                                                                             | bus address m<br>data. If zero, a<br>lebugger. If noi | default value i             | s selected by |
|             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                      | acca                                                                                                             | •                                                     |                             |               |

- -

. . . . . . . . . . .

| different from | Status half-word of command packet is updated. Data is written into memory.                         |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| Entry          | R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if errors.<br>R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if no errors. |  |  |  |

Note: MENMON's internal status codes are returned in Status.

. . . . . . . .

## 3.10 VxWorks Bootline

MENMON passes a string to the client program that confirms to the standard VxWorks bootline. This string is copied to a fixed address before the client program is called.

MENMON stores the VxWorks bootline in the second half of the serial EEPROM. MENMON command EE-VXBLINE allows you to change the bootline interactively (same behavior as VxWorks *bootChange()* routine).

There are alternative commands to modify only specific parameters within the bootline.

The parameters in the bootline are used both by MENMON and by operating system bootstrappers.

The address of the bootline string is  $0 \times 4200$  on all PowerPC platforms and has space for 256 characters.

The bootline has the following form:

bootdev(unitnum,procnum)hostname:filename e=# b=# h=# g=# u=userid
pw=passwd f=#
tn=targetname s=startupscript o=other

The bootline is a null-terminated ASCII string. Example:

```
enp(0,0)host:/usr/wpwr/target/config/mz7122/vxWorks e=90.0.0.2
b=91.0.0.2 h=100.0.0.4 g=90.0.0.3 u=bob pw=realtime f=2 tn=target
s=host:/usr/bob/startup o=any_string
```

#### Table 33. MENMON — VxWorks Bootline — List of Parameters and their Usage

| Parameter                    | Description                                                                                       | Special<br>Command | Used by<br>MENMON           |
|------------------------------|---------------------------------------------------------------------------------------------------|--------------------|-----------------------------|
| boot device + unit<br>number | Device name of boot device                                                                        |                    | No                          |
| processor number             |                                                                                                   |                    | No                          |
| host name                    | Name of host to boot from                                                                         |                    | No                          |
| file name                    | File name of file to be booted                                                                    | EE-BOOTFILE        | Yes, for NBOOT<br>and DBOOT |
| inet on ethernet (e=)        | IP address and optional subnet mask<br>of this machine on Ethernet (e. g.<br>192.1.1.28:ffffff00) | EE-NETIP           | Yes, for NBOOT              |
| inet on backplane (b=)       | IP address on backplane                                                                           |                    | No                          |
| host inet (h=)               | IP address of host to boot from                                                                   | EE-NETHOST         | Yes, for NBOOT              |
| gateway inet (g=)            | IP address of gateway                                                                             | EE-NETGW           | Yes, for NBOOT              |
| user (u=)                    | User name                                                                                         |                    | No                          |
| ftp password (pw=)           | Password                                                                                          |                    | No                          |
| flags (f=)                   | Flags for VxWorks                                                                                 |                    | No                          |
| target name (tn=)            | Name of this machine                                                                              | EE-NETNAME         | No                          |

| Parameter           | Description                            | Special<br>Command | Used by<br>MENMON |
|---------------------|----------------------------------------|--------------------|-------------------|
| startup script (s=) | Startup script for VxWorks             |                    | No                |
| other (o=)          | Other devices to initialize in VxWorks |                    | No                |

#### 3.10.1 Additional MENMON Parameters

Client programs often need to query certain parameters which are already set up or detected by MENMON. In the past, client programs had to read the EEPROM or access some registers directly in order to get these parameters.

The new method allows MENMON to pass certain parameters to the client program. These parameters are stored in an separate ASCII string. The advantages lie in common access to these parameters over the range of PPC boards and saving time to boot.

The address of the parameter string is  $0 \times 3000$  on all PowerPC platforms and has space for 512 characters.

| Parameter            | Description                                           |  |  |
|----------------------|-------------------------------------------------------|--|--|
| MPAR                 | Magic word at beginning of string                     |  |  |
| brd=A011             | Product name of the board                             |  |  |
| brdrev=xx.yy.zz      | Board revision                                        |  |  |
| brdmod=xx            | Board model                                           |  |  |
| sernbr=xxxx          | Serial number (decimal)                               |  |  |
| cbr= <i>baud</i>     | Console baud rate in bits/s (decimal)                 |  |  |
| cons= <i>dev</i>     | Selected console as an ASCII string ("COM1" or "VGA") |  |  |
| mem0= <i>size</i>    | Size of main memory in kbyte (decimal)                |  |  |
| cpu= <i>name</i>     | CPU type (MPC740, MPC603e)                            |  |  |
| cpuclk=f             | CPU frequency in MHz (decimal)                        |  |  |
| memclk=f             | Memory bus frequency in MHz (decimal)                 |  |  |
| l2cache= <i>size</i> | Level 2 cache size in kbyte (decimal)                 |  |  |
| vmeirqenb= <i>xx</i> | VME interrupt level enable mask (hex)                 |  |  |

Table 34. MENMON - Common Parameters Passed by All MENMONs

#### Example

| 00003000: | 4D504152 | 20627264 | 3D413031 | 31206272 | MPAR brd=A011 br |
|-----------|----------|----------|----------|----------|------------------|
| 00003010: | 64726576 | 3D30312E | 30322E30 | 30206272 | drev=01.02.00 br |
| 00003020: | 646D6F64 | 3D303120 | 7365726E | 62723D32 | dmod=01 sernbr=2 |
| 00003030: | 33206362 | 723D3131 | 35323030 | 20636F6E | 3 cbr=115200 con |
| 00003040: | 733D434F | 4D31206D | 656D303D | 33323736 | s=COM1 mem0=3276 |
| 00003050: | 38206370 | 753D4D50 | 43373430 | 20637075 | 8 cpu=MPC740 cpu |
| 00003060: | 636C6B3D | 32393920 | 6D656D63 | 6C6B3D36 | clk=299 memclk=6 |
| 00003070: | 37206C32 | 63616368 | 653D3531 | 3220766D | 7 l2cache=512 vm |
| 00003080: | 65697271 | 656E623D | 46450000 | 93810020 | eirqenb=FE       |
|           |          |          |          |          |                  |

# 4 Organization of the Board

To install software on the A11 board or to develop low-level software it is essential to be familiar with the board's address and interrupt organization.

# 4.1 Memory Mappings

The memory mapping of the A11 complies with the PowerPC Reference Platform (PRP) Specification. The MPC106 host bridge is set to map A to support this mapping.

# 4.1.1 Processor View of the Memory Map

Table 35. Address Map — Processor View

| CPU Address Range    | Size           | PCI Address Range    | Description          |
|----------------------|----------------|----------------------|----------------------|
| 0x00000000x3FFFFFF   | 1GB            | -                    | DRAM                 |
| 0x400000000x7FFFFFF  | 1GB            | -                    | Reserved             |
| 0x800000000x807FFFF  | 8MB            | 0x000000000x007FFFF  | ISA/PCI I/O Space    |
| 0x808000000x80FFFFF  | 8MB            | 0x008000000x00FFFFF  | PCI Config Space     |
| 0x810000000xBF7FFFF  | 1GB - 8MB      | 0x010000000x3F7FFFF  | PCI I/O Space        |
| 0xBF8000000xBFFFFFFF | 8MB - 16 bytes | -                    | Reserved             |
| OxBFFFFFF0OxBFFFFFF  | 16 bytes       | 0x3FFFFFF00x3FFFFFFF | PCI IACK Space       |
| 0xC00000000xC0FFFFF  | 16MB           | 0x000000000x00FFFFF  | PCI/ISA Memory Space |
| 0xC10000000xFEFFFFF  | 1GB - 16MB     | 0x010000000x3EFFFFF  | PCI Memory Space     |
| 0xFF0000000xFF7FFFFF | 8MB            | -                    | Flash Bank 0         |
| 0xFF8000000xFFFFFFF  | 8MB            | -                    | Flash Bank 1         |

# 4.1.2 PCI Configuration Space Map (Primary Bus)

| IDSEL | CPU Address          | PCI Configuration Space<br>Address | Definition             |
|-------|----------------------|------------------------------------|------------------------|
|       | 0x008000000x80800FFF | 0x008000000x0080FFFF               | Reserved               |
| A12   | 0x808010000x808010FF | 0x008010000x008010FF               | PCI-to-SCSI SYM53C895  |
|       | 0x808011000x80801FFF | 0x008011000x00801FFF               | Reserved               |
| A13   | 0x808020000x808020FF | 0x008020000x008020FF               | PCI-to-VME Universe II |
|       | 0x808021000x80803FFF | 0x008021000x00803FFF               | Reserved               |
| A14   | 0x808040000x808040FF | 0x008040000x008040FF               | Fast Ethernet DS21143  |
|       | 0x808041000x8080FFFF | 0x008041000x0080FFFF               | Reserved               |
| A16   | 0x808100000x808100FF | 0x008100000x008100FF               | PCI-to-PCI DS21150     |
|       | 0x808101000x8083FFFF | 0x008101000x0083FFFF               | Reserved               |
| A18   | 0x808400000x808400FF | 0x008400000x008400FF               | PCI-to-ISA M1543       |
|       | 0x808401000x808FFFFF | 0x008401000x008FFFFF               | Reserved               |
| A20   | 0x809000000x809000FF | 0x009000000x009000FF               | PCI expansion          |
|       | 0x809001000x80FFFFF  | 0x009001000x00FFFFF                | Reserved               |

Table 36. PCI Configuration Space Map (Primary Bus)

. . . . . . . . . . . . . . . . . .

# 4.1.3 PCI Configuration Space Map (Secondary Bus)

| IDSEL | CPU Address | PCI Configuration Space Address | Definition |
|-------|-------------|---------------------------------|------------|
| A16   | Tbd.        | Tbd.                            | PC•MIP 0   |
| A17   | Tbd.        | Tbd.                            | PC•MIP 1   |

# 4.1.4 PCI/ISA I/O Space Memory Map

This memory map complies to the ISA I/O address assignments. Refer to data sheet "ALADIN M1543: Desktop South Bridge, version 1.25, Jan. 1998" for configuration registers.

Table 38. PCI/ISA I/O Space Memory Map

| CPU Address Range    | Device                                   | Register                                                      |
|----------------------|------------------------------------------|---------------------------------------------------------------|
| 0x80000000x8000000F  | M1543                                    | DMA1 (slave)                                                  |
| 0x80000020           | M1543                                    | INT_1 (master) Control Register                               |
| 0x80000021           | M1543                                    | INT_1 (master) Mask Register                                  |
| 0x80000040           | M1543                                    | Timer Counter - Channel 0 Count                               |
| 0x80000041           | M1543                                    | Timer Counter - Channel 1 Count                               |
| 0x80000042           | M1543                                    | Timer Counter - Channel 2 Count                               |
| 0x80000043           | M1543                                    | Timer Counter Command Mode Register                           |
| 0×80000060           | M1543                                    | Read_access Clear IRQ[12] (for PS2), IRQ[1]<br>Latched Status |
| 0x8000060            | M1543                                    | Keyboard Data Buffer                                          |
| 0x80000061           | M1543                                    | NMI and Speaker Status and Control                            |
| 0x80000064           | M1543                                    | Keyboard Status(R)/Command(W)                                 |
| 0×80000070           | RTC                                      | CMOS RAM Address Port (A0A6) and NMI<br>Mask Register         |
| 0x80000071           | RTC                                      | CMOS Data Register                                            |
| 0x80000072           | RTC                                      | Port CMOS RAM Address Port (A7A12)                            |
| 0x800000800x8000009F | M1543 DMA Channel x Page Register        |                                                               |
| 0x800000A0           | M1543                                    | INT_2 (slave) Control Register                                |
| 0x800000A1           | M1543                                    | INT_2 (slave) Mask Register                                   |
| 0x800000C00x800000DF | M1543                                    | DMA2 (master)                                                 |
| 0x800000F0           | M1543 Coprocessor Error Ignored Register |                                                               |
| 0x800001F00x800001F7 | M1543                                    | IDE Primary registers part A                                  |
| 0x800002F80x800002FF | M1543 Super I/O                          | UART2 controller                                              |
| 0x800003780x8000037F | M1543 Super I/O                          | Parallel Port Controller                                      |
| 0x800003F0           | M1543 Super I/O                          | Config Port Index                                             |
| 0x800003F1           | M1543 Super I/O                          | Config Port Data                                              |
| 0x800003F00x800003F5 | M1543 Super I/O                          | Floppy Controller                                             |
| 0x800003F60x800003F7 | M1543                                    | IDE Primary registers part B                                  |
| 0x800003F80x800003FF | M1543 Super I/O                          | UART1 controller                                              |
| 0x8000040B           | M1543                                    | DMA1 Extended Mode Register                                   |
| 0x800004810x8000048B | M1543 DMA High Page Registers            |                                                               |
| 0x800004D0           | M1543                                    | INT_1 (master) Edge/Level Control                             |
| 0x800004D1           | M1543                                    | INT_2 (slave) Edge/Level Control                              |

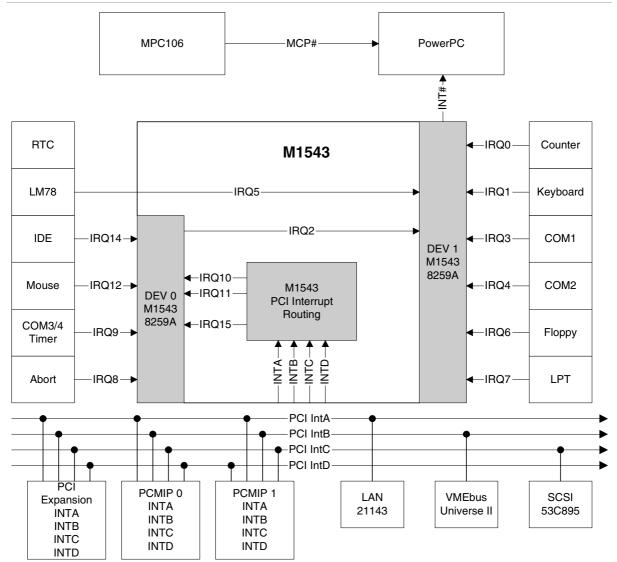
| CPU Address Range    | Device       | Register                       |
|----------------------|--------------|--------------------------------|
| 0x800004D6           | M1543        | DMA2 Extended Mode Register    |
| 0x80000840           | Z85230-SCC   | Port B Control (serial port 4) |
| 0x80000841           | Z85230-SCC   | Port B Data (serial port 4)    |
| 0x80000842           | Z85230-SCC   | Port A Control (serial port 3) |
| 0x80000843           | Z85230-SCC   | Port A Data (serial port 3)    |
| 0x80000844           | Z8536-CIO    | Port C Data                    |
| 0x80000845           | Z8536-CIO    | Port B Data                    |
| 0x80000846           | Z8536-CIO    | Port A Data                    |
| 0x80000847           | Z8536        | Control Register               |
| 0x8000084F           | Z85230/Z8536 | Pseudo IACK                    |
| 0x80000CF8           | MPC106       | PCI Config Space Index         |
| 0x80000CFC           | MPC106       | PCI Config Space Data          |
| 0x800018000x8000181E | M1543        | SMB Controller                 |

#### 4.1.5 VMEbus Memory Map

This map shows a possible configuration of the VMEbus mapping. The mapping is defined in the PCI slave image registers of the Tundra Universe II chip. These registers are reprogrammable at any time. Please refer to the board support package of the operating system software.

Table 39. Possible VMEbus Memory Map

| CPU Address          | Description | Address Modifiers |
|----------------------|-------------|-------------------|
| 0x8C0000000x8CFEFFFF | A24/D16     | DU                |
| 0x8CFF00000x8CFFFFFF | A16/D16     | DU                |
| 0x8D0000000x8DFEFFFF | A24/D16     | DS                |
| 0x8DFF00000x8DFFFFFF | A16/D16     | DS                |
| 0x8E0000000x8EFEFFFF | A24/D32     | DU                |
| 0x8EFF00000x8EFFFFFF | A16/D32     | DU                |
| 0x8F0000000x8FFEFFFF | A24/D32     | DS                |
| 0x8FFF00000x8FFFFFFF | A16/D32     | DS                |
| 0xC00000000xC7FFFFF  | A32/D16     | DS                |
| 0xC80000000xCFFFFFF  | A32/D32     | DU                |


#### Legend (address modifiers)

- D Data
- P Program
- U User
- S Supervisor

# 4.2 Interrupt Handling

The A11 supports both maskable and nonmaskable Interrupts. The interrupt controller is located inside the M1543 PCI-to-ISA bridge.

Figure 19. A11 Interrupt Structure



## 4.2.1 Nonmaskable Interrupts

The M1543 can be programmed to assert an NMI when it detects a low level of the SERR# line on the PCI local bus. The MPC106 will assert MCP# to the processor upon detecting a high level on NMI from the M1543. The MPC106 can also be programmed to assert MCP# under other conditions. Please refer to the MPC106 user manual for details.

### 4.2.2 Maskable Interrupts

The M1543 supports 15 interrupt requests. These 15 interrupts are ISA-type interrupts that are functionally equivalent to two 82C59 interrupt controllers. The chip also provides two steerable IRQ lines which can be routed to any of the available ISA interrupts. The M1543 supports four PCI interrupts: INTA#, INTB#, INTC# and INTD#. The interrupt lines may to be routed to any of twelve ISA interrupt lines.

Table 40. ISA Interrupt Assignments

| ISA IRQ | Edge/Level | Polarity | Source              |
|---------|------------|----------|---------------------|
| 5       | Edge       | Low      | LM78 System Monitor |
| 8       | Level      | Low      | Abort Push Button   |
| 9       | Edge       | Low      | ESCC 85230/CIO8536  |

Table 41. Steerable Interrupt Assignments

| SIRQ | Edge/Level | Polarity | Source          |
|------|------------|----------|-----------------|
| 1    | Level      | High     | Primary IDE IRQ |

#### Table 42. PCI Interrupt Assignments

| LAN<br>DEC21143 | VMEbus<br>Universal | SCSI<br>SYM53C895 | PC•MIP 0 | PC•MIP 1 | PCI<br>Expansion |
|-----------------|---------------------|-------------------|----------|----------|------------------|
| INTA            |                     |                   | INTA     | INTD     | INTA             |
|                 | INTB                |                   | INTB     | INTA     | INTB             |
|                 |                     | INTC              | INTC     | INTB     | INTC             |
|                 |                     |                   | INTD     | INTC     | INTD             |

The entire interrupt routing is managed by the boot software and board support package of the operating system.

# 4.3 Implementation of SYM53C895 SCSI Controller

The A11 provides the terminators for SE and LVD mode. Mode setting and termination is handled by the general purpose pins of the SYM53C895 SCSI controller.

| General-Purpose Pin | Setting                                        | Description |
|---------------------|------------------------------------------------|-------------|
| GPIO 0              | -                                              | Reserved    |
| GPIO 1              | -                                              | Reserved    |
| GPIO 2              | H: Disable<br>L: Enable                        | TERM 8-bit  |
| GPIO 3              | H: Disable<br>L: Enable                        | TERM 16-bit |
| GPIO 4              | H: Low voltage differential<br>L: Single-ended | DIFFSENSE   |

Table 43. General-Purpose Pins of SYM53C895 SCSI Controller

. . . . . . . . . . . .

# 4.4 Implementation of M1543 PCI-to-ISA Bridge

The GPO/GPI/GPIO pins of the M1543 are used for several functions on the A11. The tables below show the port assignments of the A11. There are 10 General Purpose Output pins, 6 General Purpose Input pins and 8 General Purpose I/O pins. Since most of these pins are multifunction pins, they must be enabled by programming.

| Input | Description    |
|-------|----------------|
| 0     | USER IN 0      |
| 2     | USER IN 2      |
| 3     | USER IN 3      |
| 48    | Reserved       |
| 9     | Keyboard clock |
| 10    | Keyboard data  |
| 11    | Mouse clock    |

Table 44. M1543 General Purpose Input (GPI) Pin Assignments

Table 45. M1543 General Purpose Input/Output (GPIO) Pin Assignments

| I/O | Direction | Description     |
|-----|-----------|-----------------|
| 0   | out       | VMEbus IRQ6     |
| 1   | out       | VMEbus IRQ1     |
| 2   | out       | VMEbus IRQ2     |
| 3   | out       | VMEbus IRQ3     |
| 4   | out       | VMEbus IRQ4     |
| 5   | out       | VMEbus IRQ5     |
| 6   | out       | IDE 66MHz Clock |
| 7   | out       | VMEbus IRQ7     |

| Output | Description                                             |
|--------|---------------------------------------------------------|
| 0      | Programmable ISA-/CS                                    |
| 1      | Not used                                                |
| 2      | Front/rear COM1/2:<br>0: Front COM1/2<br>1: Rear COM1/2 |
| 3      | VMEbus RESET                                            |
| 48     | Reserved                                                |
| 9      | User LED 3                                              |
| 1011   | Reserved                                                |
| 12     | Direction of X-Bus                                      |
| 1317   | Reserved                                                |
| 18     | WR# enable Flash D0D31                                  |
| 19     | WR# enable Flash D32D63                                 |
| 20     | User LED 2                                              |
| 22     | User LED 1                                              |
| 23     | User LED 0                                              |

Table 46. M1543 General Purpose Output Pin Assignments

The on-board hex switch is connected to the general purpose inputs of the M1543.

Table 47. M1543 GPI Assignment for Hex Switch

| M1543 | Description  |
|-------|--------------|
| GPI 0 | Switch bit 1 |
| DOCK  | Switch bit 2 |
| GPI 2 | Switch bit 4 |
| GPI 3 | Switch bit 8 |

# 4.5 Z8536 CIO

- - - - - - -

- - - -

| Port Pin | Signal Name | Direction | Description                |
|----------|-------------|-----------|----------------------------|
| PA0      | PRESENT     | in        | PCI Extension Card present |
| PA1      | -           | in        |                            |
| PA2      | GA4         | in        | VME64 geographic address   |
| PA3      | -           | in        |                            |
| PA4      | -           | in        |                            |
| PA5      | DTRA        | out       | Data terminal ready port A |
| PA6      | SDA in      | in        | I <sup>2</sup> C bus       |
| PA7      | SDA out     | out       | I <sup>2</sup> C bus       |
| PB0      | SCL in      | in        | I <sup>2</sup> C bus       |
| PB1      | SCL out     | out       | I <sup>2</sup> C bus       |
| PB2      | GAP         | in        | VME64 geographic address   |
| PB3      | -           | in        |                            |
| PB4      | -           | in        |                            |
| PB5      | DTRB        | out       | Data terminal ready port B |
| PB6      | -           | in        |                            |
| PB7      | ABORT       | in        | Status of the abort button |
| PC0      | GA0         | in        | VME64 geographic address   |
| PC1      | GA1         | in        | VME64 geographic address   |
| PC2      | GA2         | in        | VME64 geographic address   |
| PC3      | GA3         | in        | VME64 geographic address   |

Table 48. Pin Assignment of the Z8536 Ports

# 5 Appendix

### 5.1 Literature and WWW Resources

### 5.1.1 Bridges

- MPC106 Host Bridge: MPC106 PCI Bridge/Memory Controller User's Manual, Motorola www.mot.com
- M1543 PCI-to-ISA bridge: M1543 Preliminary Data Sheet, Acer Laboratories Inc. Jan. 1998 / Version 1.25 www.acer.com
- 21150 PCI-to-PCI Bridge: 21150 PCI-to-PCI Bridge, Intel, July 1998 www.intel.com

# 5.1.2 VMEbus

- Tundra Universe II: Universe II User Manual 1998, Tundra Semiconductor Corporation www.tundra.com
- VMEbus General:
  - The VMEbus Specification, 1989
  - The VMEbus Handbook, Wade D.Peterson, 1989

VMEbus International Trade Association www.vita.com

# 5.1.3 PCI

• PCI Local Bus Specification Revision 2.1: 1995; PCI Special Interest Group P.O. Box 14070 Portland, OR 97214, USA www.pcisig.com

# 5.1.4 Ethernet

- 21143 Ethernet controller: 21143 PCI/CardBus 10/100 Mbit/s Ethernet, LAN Controller, Digital Semiconductor www.intel.com
- Ethernet in general:
  - The Ethernet, A Local Area Network, Data Link Layer and Physical Layer Specifications, Version 2.0; 1982; Digital Equipment Corporation, Intel Corp., Xerox Corp.
  - ANSI/IEEE 802.3-1996, Information Technology Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications; 1996; IEEE www.ieee.org
- www.ethermanage.com/ethernet/

links to documents describing Ethernet, components, media, the Auto-Negotiation system, multi-segment configuration guidelines, and information on the Ethernet Configuration Guidelines book

- www.iol.unh.edu/training/ethernet.html collection of links to Ethernet information, including tutorials, FAQs, and guides
- www.made-it.com/CKP/ieee8023.html Connectivity Knowledge Platform at Made IT technology information service, with lots of general information on Ethernet

# 5.1.5 SCSI

- SCSI Specifications:
  - X3.131-1986 (SCSI-1); American National Standard Institute www.ansi.org
  - X3.131-198X (SCSI-2); Global Engineering Documents 2805 McGaw Irvine, CA 92714

# 5.1.6 Parallel Port

• Parallel Port (EPP):

1284-1994 IEEE Standard Signaling Method for a Bidirectional Parallel Peripheral Interface for Personal Computers; 1994; IEEE www.ieee.org

# 5.1.7 PC•MIP

 PC•MIP Standard: standard ANSI/VITA 29; VMEbus International Trade Association 7825 E. Gelding Dr., Ste. 104, Scottsdale, AZ 85260 www.vita.com

## 5.1.8 Miscellaneous

- LM78 watchdog: LM78, National Semiconductor Corporation, Data Sheet 1996 www.national.com
- SCC User's Manual (for Z85230 and other Zilog parts), Document: UM95SCC0100
- Z8536: Z8536 CIO Counter/Timer and Parallel I/O Unit, User's Manual www.zilog.com

# 5.2 Board Revisions

| Table 49. Table of Hardware Revision | ns |
|--------------------------------------|----|
|--------------------------------------|----|

| Revision | Comment   | Restrictions                                                                                                                                                                                    |
|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00.xx    | Prototype | <b>1. Operating temperature</b><br>The operating temperature range is limited to<br>0°C+60°C. We recommend to guarantee suffi-<br>cient air flow inside the rack. The A11 uses 8T in a<br>rack. |
|          |           | <b>2. Reset operation</b><br>Onboard reset operations are not directed to the<br>VMEbus, except PowerON Reset. The SYSRE-<br>SET# from the VMEbus is always directed to the<br>A11.             |
|          |           | <b>3. LVD SCSI</b><br>The LVD SCSI connector at the front panel is inac-<br>tive. 16/8-bit single ended (SE) SCSI is available at<br>the rear P2 adapter.                                       |
|          |           | <b>4. System monitor</b><br>System monitor functions, such as voltage and<br>temperature measurement, provided by the LM78<br>device, are not available.                                        |
|          |           | <b>5. COP interface</b><br>The COP interface for boundary scan based development systems is not supported.                                                                                      |
|          |           | <b>6. 100Base-TX</b><br>Ethernet transfer protocol at 100Mbit does not<br>work. 10Base-T shall be used.                                                                                         |

| Revision | Comment                                                                                                                           | Restrictions                                                                                                                                                                                                                                                                                                                 |
|----------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01.xx    | First revision released<br>The PCI expansion connector<br>is not mounted on the A11.<br>Please ask MEN sales for this<br>option.  | <b>1. COM1/2 rear I/O handshake lines</b><br>The CTS and RTS handshake lines for COM1/2 via<br>P2 rear I/O are not supported. The handshake<br>lines at the front panel conectors are not affected.                                                                                                                          |
|          |                                                                                                                                   | <b>2. OS-9 Boot</b><br>Booting the OS-9 operating system may cause a<br>problem when not booting from a net device. The<br>OS-9 boot senses the Ethernet port for media<br>detection. Without response from another device<br>the boot sequence will stop.<br><i>Workaround</i> : Connect an open cable to the RJ45<br>port. |
|          |                                                                                                                                   | <b>3. Reset button</b><br>The A11 enters the standby mode after the reset<br>button is pressed for 5 seconds. When the button is<br>pressed again, the board re-enters the normal<br>mode.                                                                                                                                   |
| 02.xx    | Second revision released<br>The PCI expansion connector<br>is not mounted on the A11.<br>Please ask MEN sales for this<br>option. | <b>1. COM1/2 rear I/O handshake lines</b><br>The CTS and RTS handshake lines for COM1/2 via<br>P2 rear I/O are not supported. The handshake<br>lines at the front panel conectors are not affected.                                                                                                                          |
|          |                                                                                                                                   | <b>2. OS-9 Boot</b><br>Booting the OS-9 operating system may cause a<br>problem when not booting from a net device. The<br>OS-9 boot senses the Ethernet port for media<br>detection. Without response from another device<br>the boot sequence will stop.<br><i>Workaround</i> : Connect an open cable to the RJ45<br>port. |
|          |                                                                                                                                   | <b>3. Reset button</b><br>The A11 enters the standby mode after the reset<br>button is pressed for 5 seconds. When the button is<br>pressed again, the board re-enters the normal<br>mode.                                                                                                                                   |

-

. . . . . . . . . .

| Revision | Comment                                                                                                                          | Restrictions                                                                                                                                                                                                                                                                                                                 |
|----------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 03.xx    | Third revision released<br>The PCI expansion connector<br>is not mounted on the A11.<br>Please ask MEN sales for this<br>option. | <b>1. COM1/2 rear I/O handshake lines</b><br>The CTS and RTS handshake lines for COM1/2 via<br>P2 rear I/O are not supported. The handshake<br>lines at the front panel conectors are not affected.                                                                                                                          |
|          |                                                                                                                                  | <b>2. OS-9 Boot</b><br>Booting the OS-9 operating system may cause a<br>problem when not booting from a net device. The<br>OS-9 boot senses the Ethernet port for media<br>detection. Without response from another device<br>the boot sequence will stop.<br><i>Workaround</i> : Connect an open cable to the RJ45<br>port. |
|          |                                                                                                                                  | <b>3. Reset button</b><br>The A11 enters the standby mode after the reset<br>button is pressed for 5 seconds. When the button is<br>pressed again, the board re-enters the normal<br>mode.                                                                                                                                   |

.....

. . . . . . . . . . . . .

# 5.3 Component Plans

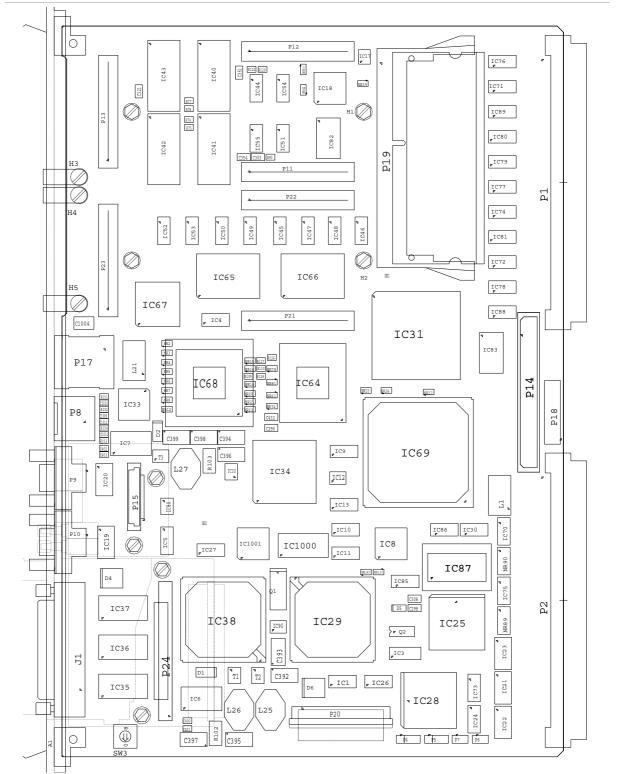



Figure 20. Component Plan of A11 Hardware Revision 03 - Top Side

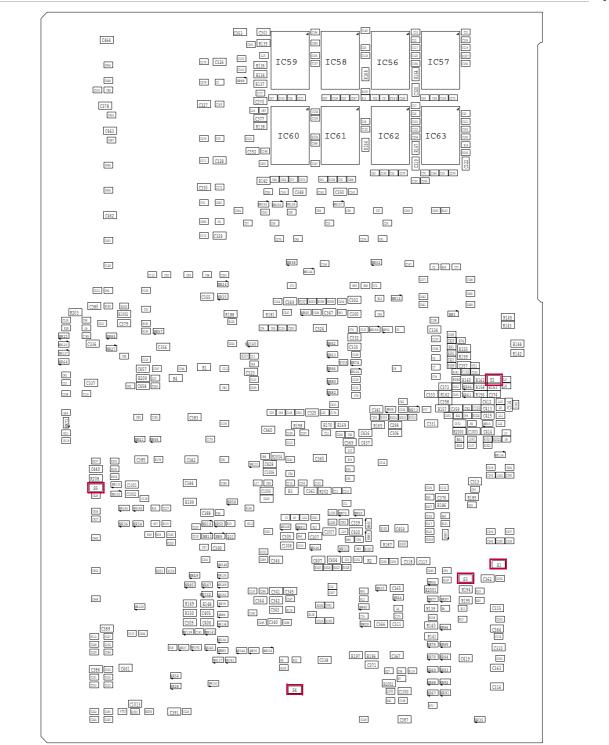



Figure 21. Component Plan of A11 Hardware Revision 03 - Bottom Side

You can request the circuit diagrams for the current revision of the product described in this manual by completely filling out and signing the following non-disclosure agreement.

Please send the agreement to MEN by mail. We will send you the circuit diagrams along with a copy of the completely signed agreement by return mail.

MEN reserves the right to refuse sending of confidential information for any reason that MEN may consider substantial.

# **Non-Disclosure Agreement**

mikro elektronik gmbh • nürnberg

for Circuit Diagrams provided by MEN Mikro Elektronik GmbH

between

MEN Mikro Elektronik GmbH Neuwieder Straße 7 D-90411 Nürnberg

("MEN")

and

· •

("Recipient")

We confirm the following Agreement:

| MEN<br>Date:                                                        | Recipient<br>Date:                                        |                                                                                                                                         |
|---------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Name:                                                               | Name:                                                     |                                                                                                                                         |
| Signature:                                                          | Signature:                                                |                                                                                                                                         |
| The following Agreement is valid as of the date of MEN's signature. |                                                           | MEN Mikro Elektronik GmbH<br>Neuwieder Straße 5-7<br>90411 Nürnberg<br>Deutschland<br>Tel. +49-911-99 33 5-0<br>Fax +49-911-99 33 5-901 |
|                                                                     | Non-Disclosure Agreement for Circuit Diagrams page 1 of 2 | E-Mail info@men.de<br>www.men.de                                                                                                        |

Geschäftsführer Manfred Schmitz, Udo Fuchs Handelsregister Nürnberg HRB 5540 UST-ID-Nr. DE 133 528 744 Deutsche Bank AG Kto. Nr. 0390 211, BLZ 760 700 12 HypoVereinsbank Kto. Nr. 1560 224 300, BLZ 760 200 70

#### 1 Subject

The subject of this Agreement is to protect all information contained in the circuit diagrams of the following product:

Article Number: \_\_\_\_\_ [filled out by recipient]

MEN provides the recipient with the circuit diagrams requested through this Agreement only for information.

#### 2 Responsibilities of MEN

Information in the circuit diagrams has been carefully checked and is believed to be accurate as of the date of release; however, no responsibility is assumed for inaccuracies. MEN will not be liable for any consequential or incidental damages arising from reliance on the accuracy of the circuit diagrams. The information contained therein is subject to change without notice.

#### 3 Responsibilities of Recipient

The recipient, obtaining confidential information from MEN because of this Agreement, is obliged to protect this information.

The recipient will not pass on the circuit diagrams or parts thereof to third parties, neither to individuals nor to companies or other organizations, without the written permission by MEN. The circuit diagrams may only be passed to employees who need to know their content. The recipient protects the confidential information obtained through the circuit diagrams in the same way as he protects his own confidential information of the same kind.

#### 4 Violation of Agreement

The recipient is liable for any damage arising from violation of one or several sections of this Agreement. MEN has a right to claim damages amounting to the damage caused, at least to €100,000.

#### 5 Other Agreements

MEN reserves the right to pass on its circuit diagrams to other business relations to the extent permitted by the Agreement.

Neither MEN nor the recipient acquire licenses for the right of intellectual possession of the other party because of this Agreement.

This Agreement does not result in any obligation of the parties to purchase services or products from the other party.

#### 6 Validity of Agreement

The period after which MEN agrees not to assert claims against the recipient with respect to the confidential information disclosed under this Agreement shall be \_\_\_\_\_ months [filled out by MEN]. (Not less than twenty-four (24) nor more than sixty (60) months.)

#### 7 General

If any provision of this Agreement is held to be invalid, such decision shall not affect the validity of the remaining provisions and such provision shall be reformed to and only to the extent necessary to make it effective and legal.

This Agreement is only effective if signed by both parties.

Amendments to this Agreement can be adopted only in writing. There are no supplementary oral agreements.

This Agreement shall be governed by German Law.

The court of jurisdiction shall be Nuremberg.



MEN Mikro Elektronik GmbH

Neuwieder Straße 5-7 90411 Nürnberg Deutschland

Tel. +49-911-99 33 5-0 Fax +49-911-99 33 5-901

E-Mail info@men.de www.men.de

Non-Disclosure Agreement for Circuit Diagrams page 2 of 2

Geschäftsführer Manfred Schmitz, Udo Fuchs Handelsregister Nürnberg HRB 5540 UST-ID-Nr. DE 133 528 744 Deutsche Bank AG Kto. Nr. 0390 211, BLZ 760 700 12 HypoVereinsbank Kto. Nr. 1560 224 300, BLZ 760 200 70