# Reference Manual

DOC. REV. 12/14/2007

# EPM-CPU-10

Pentium III/Celeron processor module with 10/100 Ethernet, Video, and PC/104-Plus interface.





# EPM-CPU-10

Pentium III/Celeron processor module with 10/100 Ethernet, Video, and PC/104-*Plus* interface





MEPMCPU10r4



### **Product Release Notes**

This page includes recent changes or improvements that have been made to this product. These changes may affect its operation or physical installation in your application. Please read the following information.

### Rev 4 Release

Rev 4 release.

### Rev 3 Release

Initial public release.

### Rev 2 Release

• Beta release only.

### **Support Page**

The EPM-CPU-10 Support Page, at <a href="http://www.VersaLogic.com/private/jaguarsupport.asp">http://www.VersaLogic.com/private/jaguarsupport.asp</a>, contains additional information and resources for this product including:

- Reference Manual (PDF format)
- Operating system information and software drivers
- Data sheets and manufacturers' links for chips used in this product
- BIOS information and upgrades
- Utility routines and benchmark software

**Note:** This is a private page for EPM-CPU-10 users only. It cannot be reached through our web site. You must enter this address directly to find the support page.

### **Model EPM-CPU-10**

Pentium III/Celeron processor module with 10/100 Ethernet, Video, and PC/104-*Plus* interface

### REFERENCE MANUAL



### **VERSALOGIC CORPORATION**

WWW.VERSALOGIC.COM

3888 Stewart Road Eugene, OR 97402 (541) 485-8575 Fax (541) 485-5712

Contents Copyright ©2007 All Rights Reserved

### Notice:

Although every effort has been made to ensure this document is error-free, VersaLogic makes no representations or warranties with respect to this product and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose.

VersaLogic reserves the right to revise this product and associated documentation at any time without obligation to notify anyone of such changes.

PC/104 and the PC/104 logo are trademarks of the PC/104 Consortium.

# **Table of Contents**

| Introduction                               | 1  |
|--------------------------------------------|----|
| Description                                | 1  |
| Technical Specifications                   |    |
| EPM-CPU-10 Block Diagram                   |    |
| Technical Support                          |    |
| Repair Service                             |    |
| Configuration / Operation                  | 7  |
| Overview                                   | 7  |
| Electrostatic Discharge                    | 7  |
| Lithium Battery                            | 7  |
| Initial Configuration and Setup            | 8  |
| Recommended Components                     | 8  |
| DRAM Module                                | 8  |
| Cables / Peripheral Devices                | 8  |
| Memory Module requirements                 | 8  |
| CMOS Setup / Boot Procedure for EPM-CPU-10 |    |
| Operating System Installation              |    |
| Reference                                  | 11 |
| Physical Dimensions                        |    |
| Hardware Assembly                          |    |
| Stack Arrangement                          |    |
| External Connectors                        |    |
| Connector Location Diagrams                |    |
| Connector Functions and Interface Cables   |    |
|                                            |    |
| High Density 80 Pin Cable (JS4)            |    |
| High Density 80-Pin Cable (JS3)            |    |
| Jumper Block Locations                     |    |
| Jumper Summary                             |    |
| Jumper Summary Power Supply                |    |
|                                            |    |
| Power Connectors                           |    |
| Power Requirements                         |    |
| Lithium Battery                            |    |
| CPUProcessor Replacement                   | 22 |
| Processor Side Bus Selection               |    |
| Heat Sink                                  |    |
| Processor Power Management                 |    |
| System RAMSystem RAM                       |    |
| Compatible Memory Modules                  |    |
| CMOS RAM                                   |    |
|                                            |    |
| Clearing CMOS RAM CMOS Setup Defaults      |    |
| CIVIOS SCIUD DETAUTS                       |    |

|      | Real Time Clock                      | 25 |
|------|--------------------------------------|----|
|      | Setting the Clock                    | 25 |
|      | DiskOnChip                           | 26 |
|      | Enable / Disable                     | 26 |
|      | Compatible Devices                   | 26 |
|      | Installing the DOC Chip              |    |
|      | CMOS Setup                           |    |
|      | Serial Ports                         |    |
|      | COM Port Configuration               |    |
|      | COM2 RS-485 Mode Line Driver Control |    |
|      | Serial Port Connectors               |    |
|      | Parallel Port.                       |    |
|      | IDE Hard Drive / CD-ROM Interfaces   |    |
|      | Utility Connector                    |    |
|      | Keyboard/Mouse Interface             |    |
|      | Programmable LED                     |    |
|      | External Speaker                     |    |
|      | Push-Button Reset.                   |    |
|      | Floppy Drive Interface               |    |
|      | Video Interface                      |    |
|      | Video Resolutions                    |    |
|      | Video Output Connector               |    |
|      | Flat Panel Display Connector         |    |
|      | Compatible Flat Panel Displays       |    |
|      | Ethernet Interface                   |    |
|      | Ethernet Connector                   |    |
|      | Ethernet Status                      |    |
|      | Watchdog Timer                       | 37 |
|      | Enabling the Watchdog                |    |
|      | Refreshing the Watchdog              | 37 |
|      | CPU Temperature Monitor              |    |
|      | USB1.1 Interface                     | 39 |
|      | Expansion Bus                        | 40 |
|      | PC/104- <i>Plus</i>                  | 40 |
|      | PC/104                               | 40 |
|      | I/O Configuration                    | 40 |
|      | Memory and I/O Map                   | 41 |
|      | Memory Map                           | 41 |
|      | I/O Map                              | 42 |
|      | Interrupt Configuration              | 43 |
|      | Special Control Register             | 44 |
|      | Revision Indicator Register          | 45 |
|      | Watchdog Timer Hold-Off Register     |    |
|      | Special Control Register             |    |
|      | Map and Paging Control Register      | 47 |
| Λ mm | andix A Other References             | 40 |
| App  | pendix A — Other References          |    |

### **Description**

The EPM-CPU-10 is a performance-oriented processor board in a compact PC/104-Plus format. It is specifically designed for OEM control projects requiring fast processing, compact size, flexible memory options, high reliability, and long product lifespan / availability. It's features include:

- Socket 370 processors
  - Intel Celeron 350 MHz (equivalent)
  - Intel Celeron 566 MHz
  - Intel Pentium III 850 MHz
- Intel 440BX chipset
- 32 to 256 MB system RAM
- 10 / 100 dual-speed Ethernet
- AGP based video
- Flat panel display support
- 32-pin DiskOnChip support
- PC/104-Plus high speed expansion interface
- PCI based IDE controller
- Dual USB 1.1 interfaces
- 2 COM + 1 LPT port

- Keyboard and PS/2 mouse port
- RS-232/422/485 COM port
- CPU temperature sensor
- Watchdog timer
- Vcc sensing reset circuit
- Flash BIOS with OEM enhancements
- Ethernet Remote boot capable
- Single supply (+5V) operation
- Latching I/O connectors
- Customizing available
- Fanless option
- TVS devices
- Customizable setup defaults

The EPM-CPU-10 is a complete computer system in a compact two board set. It may be used alone or with expansion modules. It features a PC/104-Plus expansion interface for fast PCIbased interface to a wide variety of PC/104 and PC/104-Plus stacking modules.

It is fully compatible with popular operating systems including Windows operating systems, Vx Works, QNX, Linux, and other Real Time Operating Systems.

On-board I/O includes 10/100 Mbit Ethernet, CRT / Flat Panel interface, IDE, USB 1.1, two COM and one LPT port. In addition, one of the COM ports is convertible to RS-232/422/485.

Up to 256 MB of low power system RAM is supported in a high-reliability latching 144-pin SODIMM socket. DiskOnChip Flash space is support for non-volatile program and data file storage without the use of mechanical disk drives.

The high reliability design and construction of this board also features latching I/O connectors, watchdog timer, voltage sensing reset circuit, and self-resetting fuse on the 5V supply to the keyboard, mouse, and USB 1.1 ports. An onboard programmable CPU temperature sensor is included for use in difficult thermal situations. The sensor output can be used to turn on additional fans, create local or remote warnings, or take other action through software triggers.

The EPM-CPU-10 socket 370 compliant 2-board computer will accept Intel Flip-Chip Pentium and Intel Flip-Chip Celeron Chips. Processors speeds up to 850 MHz are available.

This exceptional processor card was designed from the ground up for OEM applications with longevity and reliability as the focus. It is fully supported by the VersaLogic design team. Both hardware and software (BIOS) customization are available. Please contact a VersaLogic Applications Support Specialist to discuss these requirements.

### **Technical Specifications**

Specifications are typical at 25°C with 5.0V supply unless otherwise noted.

#### **Board Size:**

3.95" x 3.775" PCB dimensions 4.23" x 3.775" including connectors. Two board set.

### **Storage Temperature:**

-40° C to 85° C

#### Free Air Operating Temperature:

0° C to +50° C free air, no airflow (EPM-CPU-10g,h,k)
0° C to +60° C 100 FPM airflow (EPM-CPU-10g,h,k)
-40° C to +75° C free air, no airflow (EPM-CPU-10m)
-40° C to +85° C 100 FPM airflow (EPM-CPU-10m)

Power Requirements: (with 32 MB SDRAM, keyboard, mouse, running Win95 with Ethernet)

#### **System Reset:**

V<sub>CC</sub> sensing, resets below 4.75V typ. Watchdog timeout

### **DRAM Interface:**

One 144-pin SODIMM socket, 32 to 256 MB,

SDRAM (EPM-CPU-10k PC-100 compatible or faster, EPM-CPU-10g,h,m runs at PC-66).

#### Flash Interface:

One 32-pin JEDEC DIP socket.

Accepts one DiskOnChip device . Height limit of 0.330"

#### Video Interface:

Based on ATi Rage™ XL/Mobility chip. 4 MB VROM standard. Resolutions to 1280 x 1024.

Flat panel display interface, 3.3V and 5V support, TTL and LVDS

#### **IDE Interface:**

One PCI-based IDE channel, 40-pin interface, compatible with enhanced IDE mode 4 and Ultra DMA only. Supports up to two IDE devices (hard drives, CD-ROM, etc.)

### Floppy Disk Interface:

Supports two floppy drives

### **Ethernet Interface:**

10/100 Ethernet based on Intel 82551ER chip.

### COM1 Interface:

RS-232, 16C550 compatible, 115K baud max.

### **COM2 Interface:**

RS-232/422/485, 16C550 compatible, 460K baud max.

#### LPT Interface:

Bi-directional/EPP/ECP compatible

### Connectors:

I/O: Two high-density 80-pin (break out to standard .1" IDC and PC connectors).

Video: 10-pin 2mm CRT connector, 44-pin 2mm FPD connector.

Power: 10-pin .1"

**BIOS:** General Software embedded BIOS with OEM enhancements

Field upgradable with Flash BIOS Upgrade Utility

### Bus Speed:

CPU External: 66/100 MHz PCI, PC/104-*Plus*: 33 MHz PC/104: 8 MHz

#### Compatibility:

PC/104-*Plus* Version 1.2 Bus Compatible. PCI 2.1 compliance, 3.3V or 5V modules.

Specifications are subject to change without notice.

# **EPM-CPU-10 Block Diagram**

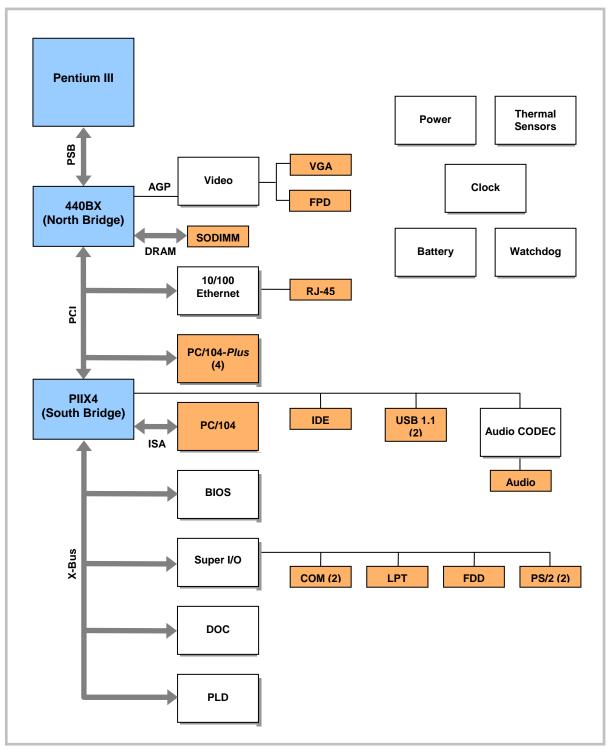



Figure 1. EPM-CPU-10 Block Diagram

### **Technical Support**

If you have problems that this manual can't help you solve, first visit the EPM-CPU-10 Product Support web page at http://www.VersaLogic.com/private/jaguarsupport.asp. If you have further questions, contact VersaLogic for technical support at (541) 485-8575. You can also reach our technical support engineers via e-mail at <a href="Support@VersaLogic.com">Support@VersaLogic.com</a>.

### **EPM-CPU-10 Support Website**

http://www.VersaLogic.com/private/jaguarsupport.asp

### REPAIR SERVICE

If your product requires service, you must obtain a Returned Material Authorization (RMA) number by calling (541) 485-8575.

Please provide the following information:

- Your name, the name of your company, and your phone number
- The name of a technician or engineer who we can contact if we have questions
- Quantity of items being returned
- The model and serial number (bar code) of each item.
- A description of the problem
- Steps you have taken to resolve or repeat the problem
- The return shipping address

Warranty Repair All parts and labor charges are covered, including return shipping

charges for UPS Ground delivery to United States addresses.

**Non-warranty Repair** All non-warranty repairs are subject to diagnosis and labor charges,

parts charges, and return shipping fees. We will need to know what shipping method you prefer for return back to your facility, and we will need to secure a purchase order number for invoicing the repair.

**Note:** Please mark the RMA number clearly on the outside of the box before

returning. Failure to do so can delay the processing of your return.

# Configuration / Operation

### **Overview**

### **ELECTROSTATIC DISCHARGE**

### Warning!

Electrostatic discharge (ESD) can damage boards, disk drives, and other components. The circuit board must be only be handled at an ESD workstation. If an approved station is not available, some measure of protection can be provided by wearing a grounded antistatic wrist strap. Keep all plastic away from the board, and do not slide the board over any surface.

After removing the board from its protective wrapper, place the board on a grounded, static-free surface, component side up. Use an anti-static foam pad if available.

The board should also be protected during shipment or storage by keeping inside a closed metallic anti-static envelope.

#### Note:

The exterior coating on some metallic anti-static bags is sufficiently conductive to cause excessive battery drain if the bag comes in contact with the bottom side of the EPM-CPU-10.

### LITHIUM BATTERY

### Warning!

To prevent shorting, premature failure, or damage to the lithium battery, do not place the board on a conductive surface such as metal, black conductive foam, or the outside surface of a metalized ESD protective pouch. The lithium battery may explode if mistreated. Do not recharge, disassemble, or dispose of in fire. Dispose of used batteries promptly.

### **Initial Configuration and Setup**

The following list describes the recommended components and gives an abbreviated outline for setting up a typical development system.

### **RECOMMENDED COMPONENTS**

- EPM-CPU-10 Board Set
- 144-pin SODIMM SDRAM Memory Module (PC-66 or PC-100)
- ATX Power Supply
- SVGA Video Monitor
- Keyboard with PS2 connector
- 3.5" Floppy Disk Drive
- IDE Hard Drive
- IDE CD ROM Drive (optional)

### **DRAM Module**

• Insert DRAM module into the SODIMM socket. Latch into place.

### **CABLES / PERIPHERAL DEVICES**

- Plug video adapter cable (p/n CBL-1007) into socket JN2 and attach video monitor.
- Plug keyboard into socket JS4[JC].
- Plug floppy data connector JS3[JK] into floppy drive.

**Note:** The floppy drive used to boot the system (Drive A) should be connected after the twist in the cable (connector JS3[JK]).

- Plug hard drive data connector JS3[JH] into IDE hard drive.
- Optionally, a CD ROM can be connected to JS3[JJ].
- Plug power supply into JS1.
- Attach power supply cables to external drives.
- Jumper hard drive to operate as a master device.

#### **MEMORY MODULE REQUIREMENTS**

- 128MN to 256MB maximum
- 144-pin SODIMM
- PC100 or faster

### CMOS Setup / Boot Procedure for EPM-CPU-10

- Turn power on.
- Press the DEL key the instant that video is displayed (during the memory test).
- Verify correct CMOS Setup information as shown below.
- Insert bootable floppy disk into floppy drive.
- Reset computer using push button reset.
- See KnowledgeBase article <u>VT1485 EPM-CPU-10 CMOS Setup Reference</u> for more information on these options.

Basic CMOS Configuration

#### Custom Configuration

```
System BIOS Setup - Advanced Configuration
(C) 2002 General Software, Inc. All rights reserved

BIOS Extension : Disabled COM1 (03F8) Enabled/IRQ : IRQ4
DiskOnChip : Disabled COM2 (02F8) Enabled/IRQ : IRQ3
Parallel Port Mode : SPP LPT1 (0378) Enabled/IRQ : IRQ7
Display Type : CRT PS/2 Mouse Enabled/IRQ : IRQ12
I/O Register Base Address : 0E0h PCI Int A : IRQ11
CPU Temperture Threshold : 70°C PCI Int B : IRQ11
Splash Screen : Disabled PCI Int C : IRQ11
Processor Throttling : Varies PCI Int D : IRQ11
Throttling Percentage : Varies Reserved : (Unused)
```

#### Shadow Configuration

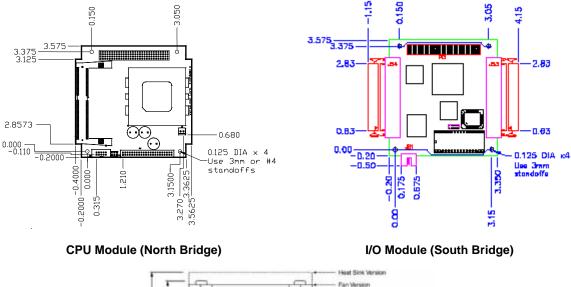
| (C) 2002 Genera                                                                                                                   |            | dow/Cache Configuration<br>Inc. All rights reserved | <br> <br>  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------|------------|
| Shadowing Shadow 16KB ROM at C400 Shadow 16KB ROM at CC00 Shadow 16KB ROM at D400 Shadow 16KB ROM at DC00 Shadow 16KB ROM at E400 | : Chipset  | Shadow 16KB ROM at C000                             | : Enabled  |
|                                                                                                                                   | : Enabled  | Shadow 16KB ROM at C800                             | : Disabled |
|                                                                                                                                   | : Disabled | Shadow 16KB ROM at D000                             | : Disabled |
|                                                                                                                                   | : Disabled | Shadow 16KB ROM at D800                             | : Disabled |
|                                                                                                                                   | : Disabled | Shadow 16KB ROM at E000                             | : Disabled |
|                                                                                                                                   | : Disabled | Shadow 16KB ROM at E800                             | : Disabled |
|                                                                                                                                   | : Disabled | Shadow 64KB ROM at F000                             | : Enabled  |

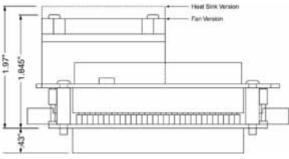
Note:

Due to changes and improvements in the system BIOS, the information on your monitor may differ from that shown above. Above screen version is Version 5.1.105

### Creating a Bootable DOS DiskOnChip

The DiskOnChip is shipped pre-formatted, non-bootable, without any files on it. The DiskOnChip will appear as Drive D in systems with an installed hard drive. If a hard drive is not installed, the DOC will appear as Drive C:


- 1. Boot your system under DOS or Windows (if using Windows, start a DOS session)
- 2. Type SYS C: (or SYS D: if appropriate)


### **Operating System Installation**

The standard PC architecture used on the EPM-CPU-10 makes the installation and use of most of the standard x86 processor-based operating systems very simple. The operating systems listed on the <u>VersaLogic OS Compatibility Chart</u> use the standard installation procedures provided by the maker of the OS. Special optimized hardware drivers for a particular operating system, or a link to the drivers, are available at the EPM-5 Product Support web page at <a href="http://www.VersaLogic.com/private/jaguarsupport.asp.">http://www.VersaLogic.com/private/jaguarsupport.asp.</a>

### **Physical Dimensions**

The EPM-CPU-10 is a two board set consisting of a CPU Module (North Bridge) and an I/O Module (South Bridge). Dimensions are given below to help with pre-production planning and layout.





**Overall Height (Fan & Fanless Model)** 

Figure 2. Dimensions (Not to scale. All dimensions in inches.)

#### HARDWARE ASSEMBLY

The EPM-CPU-10 consists of two boards which are mounted together with eight 5mm x 15mm M3 threaded hex male/female standoffs (p/n VL-HDW-101) using the corner mounting holes. These standoffs are secured to the top circuit board using four pan head screws.

**Caution** Extreme care must be taken not to damage components near the corner mounting holes when tightening standoffs with nut driver tools.

Additional PC/104-*Plus* or PC/104 cards can be attached to the bottom of the EPM-CPU-10 board set and secured with standoffs or 5mm nuts.

PC/104-Plus expansion modules can be secured directly to the underside of the EPM-CPU-10.

PC/104 expansion modules can be secured to the underside of the EPM-CPU-10, however, the 40-pin and 64-pin ISA feedthrough connectors may need to be extended, and longer standoffs might need to be used to provide adequate clearance between the PCI connector and the components on the top side of the PC/104 module.

The entire assembly can sit on a table top or it can be secured to a base plate. When bolting the unit down, make sure to secure all four standoffs to the mounting surface to prevent circuit board flexing. Refer to the drawing on page 11 for dimensional details.

An extractor tool is available (part number VL-HDW-201) to separate the modules from the stack.

#### STACK ARRANGEMENT

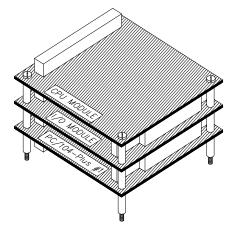



Figure 3. PC/104-Plus Card Added to Bottom of Stack

### **External Connectors**

### **CONNECTOR LOCATION DIAGRAMS**

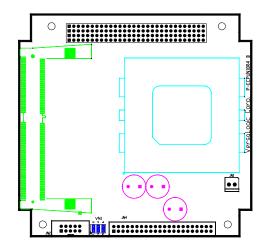



Figure 4. Connector Location Diagram (CPU Module)

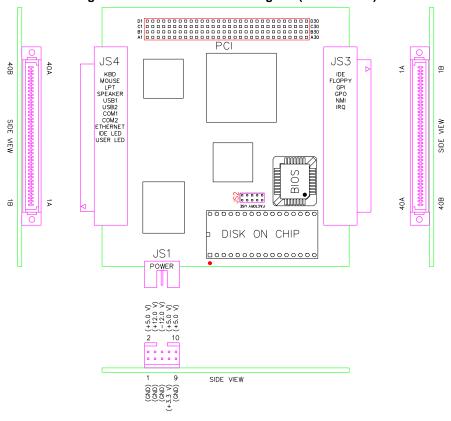



Figure 5. Connector Location Diagram (I/O Module)

### **CONNECTOR FUNCTIONS AND INTERFACE CABLES**

The table below notes the function of each connector, as well as mating connectors and cables, and the page where a detailed pinout or further information is available.

**Table 1: Connector Functions and Interface Cables** 

| Connector | Function                                                                                                     | Mating<br>Connector                                 | Transition<br>Cable        | Cable<br>Description                                   | Page |
|-----------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|--------------------------------------------------------|------|
| JN1       | Fan Power Output (+5V)                                                                                       | Molex 22-01-3027 or<br>Molex 22-01-2025             | Provided with fan assembly | _                                                      | 22   |
| JN2       | SVGA Video Output                                                                                            | SAMTEC<br>TCSD-05-S-12.00-01-F-N                    | CBL-1007                   | 1 foot 10-pin socket to<br>15-pin D-sub SVGA connector | 33   |
| JN4*      | Flat Panel Interface                                                                                         | FCI 90311-044(Housing) +<br>FCI 77138(Crimp Pins)   | _                          | Contact Factory                                        | 34   |
| JS1       | Main Power Input                                                                                             | Berg 69176-010 (Housing) +<br>Berg 47715-000 (Pins) | CBR-1008                   | Interface from industry standard ATX power supply      | 20   |
| JS2       | PLD Reprogramming<br>Port (Factory use Only)                                                                 | _                                                   | _                          | _                                                      | _    |
| JS3       | IDE0, Floppy, General<br>Purpose Input, General<br>Purpose Output, NMI                                       | Robinson-Nugent<br>P50E-080S-TG                     | CBL-8002                   | Breakout to standard PC device connectors              | 16   |
| JS4       | Keyboard, Mouse, LPT1,<br>Speaker, USB1, USB2,<br>COM1, COM2, Ethernet,<br>IDE Data LED,<br>Programmable LED | Robinson-Nugent<br>P50E-080S-TG                     | CBL-8001                   | Breakout to standard PC device connectors              | 15   |

<sup>\*</sup> **Note:** This connector is a 2.00mm housing and crimp terminal, discrete wire style. Number of crimp terminals depends upon flat panel display model being used.

### HIGH DENSITY 80-PIN CABLE (JS4)

Cable assembly CBL-8001 is used to break-out this high density connector into standard PC I/O connectors. This chart shows the pinout for the cable assembly.

Table 2: JS4 High Density 80-Pin Connector Pinout

| JS4 | External  |     |                   |
|-----|-----------|-----|-------------------|
| Pin | Connector | Pin | Signal            |
| 1A  | LPT1      | 1   | Strobe            |
| 2A  | JA        | 14  | Auto feed         |
| 3A  |           | 2   | Data bit 1        |
| 4A  |           | 15  | Printer error     |
| 5A  |           | 3   | Data bit 2        |
| 6A  |           | 16  | Reset             |
| 7A  |           | 4   | Data bit 3        |
| 8A  |           | 17  | Select input      |
| 9A  |           | 5   | Data bit 4        |
| 10A |           | 18  | Ground            |
| 11A |           | 6   | Data bit 5        |
| 12A |           | 19  | Ground            |
| 13A |           | 7   | Data bit 6        |
| 14A |           | 20  | Ground            |
| 15A |           | 8   | Data bit 7        |
| 16A |           | 21  | Ground            |
| 17A |           | 9   | Data bit 8        |
| 18A |           | 22  | Ground            |
| 19A |           | 10  | Acknowledge       |
| 20A |           | 23  | Ground            |
| 21A |           | 11  | Port Busy         |
| 22A |           | 24  | Ground            |
| 23A |           | 12  | Paper End         |
| 24A |           | 25  | Ground            |
| 25A |           | 13  | Select            |
| 26A | MISC      | _   | No Connect        |
| 27A |           | _   | Programmable LED+ |
| 28A |           | _   | Programmable LED- |
| 29A |           | _   | Speaker +         |
| 30A |           | _   | Speaker –         |
| 31A |           |     | IDE Data LED-     |
| 32A |           |     | IDE Data LED+     |
| 33A | MOUSE     | 4   | +5V (Protected)   |
| 34A | JB        | 1   | Mouse Data        |
| 35A |           | 3   | Ground            |
| 36A |           | 5   | Mouse Clock       |
| 37A | KBD       | 4   | +5V (Protected)   |
| 38A | JC        | 1   | Keyboard Data     |
| 39A |           | 3   | Ground            |
| 40A |           | 5   | Keyboard Clock    |

| JS4 | External  | D:  | 011                 |
|-----|-----------|-----|---------------------|
| Pin | Connector | Pin | Signal              |
| 1B  | USB       | 1   | +5V (Protected)     |
| 2B  | JD        | 6   | Ground              |
| 3B  |           | 2   | Channel 0 Data -    |
| 4B  |           | 7   | Cable Shield        |
| 5B  |           | 3   | Channel 0 Data +    |
| 6B  |           | 8   | Channel 1 Data +    |
| 7B  |           | 4   | Cable Shield        |
| 8B  |           | 9   | Channel 1 Data –    |
| 9B  |           | 5   | Ground              |
| 10B |           | 10  | +5V (Protected)     |
| 11B | ETHERNET  | 4   | Isolated Ground     |
| 12B | JE        | 5   | Isolated Ground     |
| 13B |           | 6   | Receive Data –      |
| 14B |           | 3   | Receive Data +      |
| 15B |           | 7   | Isolated Ground     |
| 16B |           | 8   | Isolated Ground     |
| 17B |           | 2   | Transmit Data –     |
| 18B |           | 1   | Transmit Data +     |
| 19B | PBRESET   | _   | Pushbutton Reset    |
| 20B |           | _   | Ground              |
| 21B | COM1      | 1   | Data Carrier Detect |
| 22B | JF        | 6   | Data Set Ready      |
| 23B |           | 2   | Receive Data        |
| 24B |           | 7   | Request to Send     |
| 25B |           | 3   | Transmit Data       |
| 26B |           | 8   | Clear to Send       |
| 27B |           | 4   | Data Terminal Ready |
| 28B |           | 9   | Ring Indicator      |
| 29B |           | 5   | Ground              |
| 30B |           | 1   | No Connect          |
| 31B | COM2      | 1   | Data Carrier Detect |
| 32B | JG        | 6   | Data Set Ready      |
| 33B |           | 2   | Receive Data        |
| 34B |           | 7   | Request to Send     |
| 35B |           | 3   | Transmit Data       |
| 36B |           | 8   | Clear to Send       |
| 37B |           | 4   | Data Terminal Ready |
| 38B |           | 9   | Ring Indicator      |
| 39B |           | 5   | Ground              |
| 40B |           |     | No Connect          |
| 700 |           |     | 110 001111001       |

### HIGH DENSITY 80-PIN CABLE (JS3)

Cable assembly CBL-8002 is used to break-out this high density connector into standard PC I/O connectors. This chart shows the pinout for the cable assembly.

Table 3: JS3 High Density 80-Pin Connector Pinout

| Pin |           |     |                        | JS3 | External  |     |                        |
|-----|-----------|-----|------------------------|-----|-----------|-----|------------------------|
|     | Connector | Pin | Signal                 | Pin | Connector | Pin | Signal                 |
| 1A  | IDE CH0   | 1   | Reset                  | 1B  | FLOPPY    | 1   | Ground                 |
| 2A  | JH/JJ     | 2   | Ground                 | 2B  | JK/JL     | 2   | Load Head              |
| 3A  |           | 3   | Data bit 7             | 3B  |           | 3   | Ground                 |
| 4A  |           | 4   | Data bit 8             | 4B  |           | 4   | No Connection          |
| 5A  |           | 5   | Data bit 6             | 5B  |           | 5   | Ground                 |
| 6A  |           | 6   | Data bit 9             | 6B  |           | 6   | No Connection          |
| 7A  |           | 7   | Data bit 5             | 7B  |           | 7   | Ground                 |
| 8A  |           | 8   | Data bit 10            | 8B  |           | 8   | Beginning Of Track     |
| 9A  |           | 9   | Data bit 4             | 9B  |           | 9   | Ground                 |
| 10A |           | 10  | Data bit 11            | 10B |           | 10  | Motor Enable 1         |
| 11A |           | 11  | Data bit 3             | 11B |           | 11  | Ground                 |
| 12A |           | 12  | Data bit 12            | 12B |           | 12  | Drive Select 0         |
| 13A |           | 13  | Data bit 2             | 13B |           | 13  | Ground                 |
| 14A |           | 14  | Data bit 13            | 14B |           | 14  | Drive Select 1         |
| 15A |           | 15  | Data bit 1             | 15B |           | 15  | Ground                 |
| 16A |           | 16  | Data bit 14            | 16B |           | 16  | Motor Enable 0         |
| 17A |           | 17  | Data bit 0             | 17B |           | 17  | Ground                 |
| 18A |           | 18  | Data bit 15            | 18B |           | 18  | Direction Select       |
| 19A |           | 19  | Ground                 | 19B |           | 19  | Ground                 |
| 20A |           | 20  | No connection          | 20B |           | 20  | Motor Step             |
| 21A |           | 21  | No connection          | 21B |           | 21  | Ground                 |
| 22A |           | 22  | Ground                 | 22B |           | 22  | Write Data Strobe      |
| 23A |           | 23  | I/O write              | 23B |           | 23  | Ground                 |
| 24A |           | 24  | Ground                 | 24B |           | 24  | Write Enable           |
| 25A |           | 25  | I/O read               | 25B |           | 25  | Ground                 |
| 26A |           | 26  | Ground                 | 26B |           | 26  | Track 0 Indicator      |
| 27A |           | 27  | I/O Channel Ready      | 27B |           | 27  | Ground                 |
| 28A |           | 28  | No connection          | 28B |           | 28  | Write Protect          |
| 29A |           | 29  | No connection          | 29B |           | 29  | Ground                 |
| 30A |           | 30  | Ground                 | 30B |           | 30  | Read Data              |
| 31A |           | 31  | IRQ14                  | 31B |           | 31  | Ground                 |
| 32A |           | 32  | Drive 16-bit I/O       | 32B |           | 32  | Head Select            |
| 33A |           | 33  | Address bit 1          | 33B |           | 33  | Ground                 |
| 34A |           | 34  | No connection          | 34B |           | 34  | Drive Door Open        |
| 35A |           | 35  | Address bit 0          | 35B | MISC      | 1   | Ground                 |
| 36A |           | 36  | Address bit 2          | 36B | JM        | 2   | +5V (Protected)        |
| 37A |           | 37  | Chip select 0          | 37B |           | 3   | General Purpose Output |
| 38A |           | 38  | Chip select 1          | 38B |           | 4   | General Purpose Input  |
| 39A | ļ         | 39  | Light Emitting Diode – | 39B |           | 5   | Non Maskable Interrupt |
| 40A | ľ         | 40  | Ground                 | 40B |           | 6   | No connection          |

## **Jumper Block Locations**

**Note:** Jumpers shown in as-shipped configuration.

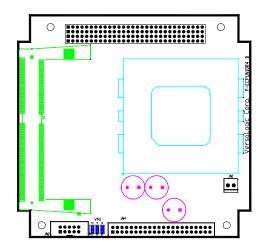



Figure 6. Jumper Block Locations (CPU Module)

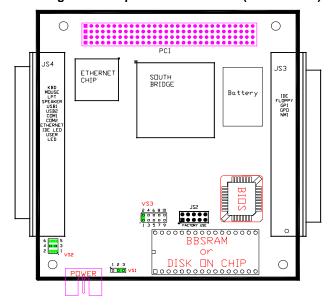



Figure 7. Jumper Block Locations (I/O Module)

### **JUMPER SUMMARY**

**Table 4: Jumper Summary North Board** 

| Jumper<br>Block | Description                  | 1                         |                                |                                                                                                                                                                                    | As<br>Shipped | Page |
|-----------------|------------------------------|---------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|
| VN1             | Video Out<br>Primary Vid     |                           | <b>e</b>                       |                                                                                                                                                                                    | _             | _    |
|                 | VN1[5-6]                     | VN1[3-4]                  | VN1[1-2]                       | Туре                                                                                                                                                                               |               |      |
|                 | In                           | In                        | In                             | CRT only, flat panel display disabled                                                                                                                                              |               |      |
|                 | In                           | In                        | Out                            | 640x480 TFT Color                                                                                                                                                                  |               |      |
|                 | In                           | Out                       | In                             | 800x600 TFT Color                                                                                                                                                                  |               |      |
|                 | Secondary                    | Video Blo                 | os                             |                                                                                                                                                                                    |               |      |
|                 |                              |                           | VN1[1-2]                       | Type                                                                                                                                                                               |               |      |
|                 | ln -                         | ln -                      | ln -                           | CRT only, flat panel display disabled                                                                                                                                              |               |      |
|                 | In                           | In                        | Out                            | 800x600 LVDS 18-bit Color*                                                                                                                                                         |               |      |
|                 | In                           | Out                       | In                             | 1024x768 LVDS 18-bit Color*                                                                                                                                                        |               |      |
|                 | The flat pan<br>default seco | nel display<br>ondary vid | s listed for tl<br>eo BIOS. Ot | selector for information on video BIOS selection. he secondary video BIOS are supported by the ther flat panel displays are supported by updating ct factory for more information. |               |      |

### **JUMPER SUMMARY**

**Table 5: Jumper Summary South Board** 

| Jumper<br>Block | Description                                                                                                                                                                                                                             | As<br>Shipped | Page |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|
| VS1             | CMOS RAM and Real Time Clock Erase  Normal Operation Erase  1 2 3 1 2 3  Note: Do not operate the board with the jumper in the erase position. Leave the                                                                                | Normal        | 24   |
|                 | jumper in position VS1[1-2] for at least 30 seconds to fully erase CMOS RAM.                                                                                                                                                            |               |      |
| VS2[1-2]        | System BIOS Selector In — Primary System BIOS Out — Secondary System BIOS                                                                                                                                                               | ln            | _    |
|                 | <b>Note:</b> The secondary System BIOS is field upgradable using the BIOS upgrade utility. See <a href="https://www.VersaLogic.com/private/jaguarsupport.asp">www.VersaLogic.com/private/jaguarsupport.asp</a> for further information. |               |      |
| VS2[3-4]        | Video BIOS Selector In — Primary Video BIOS Out — Secondary Video BIOS                                                                                                                                                                  | In            | _    |
|                 | <b>Note:</b> The secondary System BIOS is field upgradable using the BIOS upgrade utility. See <a href="https://www.VersaLogic.com/private/jaguarsupport.asp">www.VersaLogic.com/private/jaguarsupport.asp</a> for further information. |               |      |
| VS2[5-6]        | General Purpose Jumper In — Bit D1 in SCR register 00E2h reads as 1 Out — Bit D1 in SCR register 00E2h reads as 0                                                                                                                       | In            | 46   |
| VS3             | COM2 Configuration                                                                                                                                                                                                                      | RS-232        | 27   |
|                 | RS-485 RS-485<br>RS-232 RS-422 Endpoint Station Intermediate Station                                                                                                                                                                    |               |      |
|                 | 10                                                                                                                                                                                                                                      |               |      |

### **Power Supply**

### **POWER CONNECTORS**

Main power is applied to the *EPM-CPU-10* through a 10-pin polarized connector. Mating connector Berg 69176-010 (Housing) + Berg 47715-000 (Pins).

See page 13 for connector pinout and location information.

### Warning!

To prevent severe and possibly irreparable damage to the system, it is critical that the power connectors be wired correctly. Make sure to use all three +5VDC pins and all four ground pins to prevent excess voltage drop.

**Table 6: Main Power Connector Pinout** 

| JS1<br>Pin | Signal<br>Name | Description |
|------------|----------------|-------------|
| 1          | Ground         | Ground      |
| 2          | +5VDC          | Power Input |
| 3          | Ground         | Ground      |
| 4          | +12VDC         | Power Input |
| 5          | Ground         | Ground      |
| 6          | -12VDC         | Power Input |
| 7          | +3.3VDC        | Power Input |
| 8          | +5VDC          | Power Input |
| 9          | Ground         | Ground      |
| 10         | +5VDC          | Power Input |

Note:

The +3.3VDC, +12VDC, and -12VDC inputs are only required for expansion modules that require these voltages.

#### POWER REQUIREMENTS

The *EPM-CPU-10* only requires +5 volts ( $\pm 5\%$ ) for proper operation. The voltage required for the RS-232 ports and analog input sections are generated with an on-board DC/DC converter. A variable low-voltage supply circuit provides power to the CPU and other on-board devices.

The exact power requirement of the *EPM-CPU-10* depends on several factors, including memory configuration, CPU speed, peripheral connections, type and number of expansion modules, and attached devices. For example, PS/2 keyboards typically draw their power directly from the *EPM-CPU-10*, and driving long RS-232 lines at high speed can increase power demand.

### **LITHIUM BATTERY**

### Warning!

To prevent shorting, premature failure, or damage to the lithium battery, do not place the unit on a conductive surface such as metal, black conductive foam, or the outside surface of a metalized ESD protective pouch. The lithium battery may explode if mistreated. Do not recharge, disassemble, or dispose of in fire. Dispose of used batteries promptly.

Normal battery voltage should be at least 3.0V. If the voltage drops below 3.0V, contact the factory for a replacement (part number T-HB3/5). Life expectancy under normal use is approximately 10 years.

### **CPU**

### PROCESSOR REPLACEMENT

Remove or replacement of CPU is not recommended, doing so may damage the CPU. These flip-chip style 370-pin CPU's have the chip dies mounted an a thin substrate. If the substrate is flexed too far, damage will occur to the die bonds. Such damage will not be covered under the board warranty.

### **PROCESSOR SIDE BUS SELECTION**

Pentium and Celeron CPU's normally select their Processor Side Bus Speed.

### **HEAT SINK**

A heat sink and cooling fan <u>must</u> be in place whenever power is applied to the CPU. The fan connects to header JN1 for power.

**Table 7: Fan Power Connector** 

| JN1<br>Pin | Signal<br>Name | Function  |
|------------|----------------|-----------|
| 1          | +5V            | Fan Power |
| 2          | GND            | Ground    |

**Note:** A fan is not required for the low-power CELERON 350 MHz model (g version).

#### PROCESSOR POWER MANAGEMENT

A form of power management called "throttling" is supported on the EPM-CPU-10. This is an Intel 440BX chipset feature that has been augmented with an I/O control bit in the VersaLogic Special Control Register. CMOS Setup options have been implemented to select throttling percentages from 12.5% to 75%, and to enable or disable throttling. Throttling works by activating the CPU Stop-Clock line every 250 microseconds to create a duty-cycle relative to the selected throttling percentage. These throttling percentages refer to the relative time the CPU is in a stopped mode.

If throttling is enabled with the percentage set to 75%, the CPU will run at full speed (566 MHz for the EPM-CPU-10g, EPM-CPU-10h or EPM-CPU-10m and 850MHz for the EPM-CPU-10k) for 62.5 microseconds (25%) and will be off for 187.5 microseconds (75%) every 250 microsecond period.

Once the throttling percentage is initialized in the CMOS Setup, it can be enabled and disabled by writing to the "Throttle" control bit in the VersaLogic Special Control Register. See page 44. This gives the user a very simple means to throttle back during a time of little activity, and to reestablish full power when needed.

The EPM-CPU-10g Low Power Fanless and the EPM-CPU-10m versions are 566 MHz Celerons with throttling always enabled at a minimum of 37.5% (which gives an effective CPU speed of 350 MHz). It can be slowed down to the maximum throttling rate of 75%, but not less than 37.5%. The Throttle control bit in the VersaLogic Special Control Register can not be changed on the EPM-CPU-10g and EPM-CPU-10m. Contact the factory for information on how to change the throttling percentage via indexed PCI based registers in the chipset.

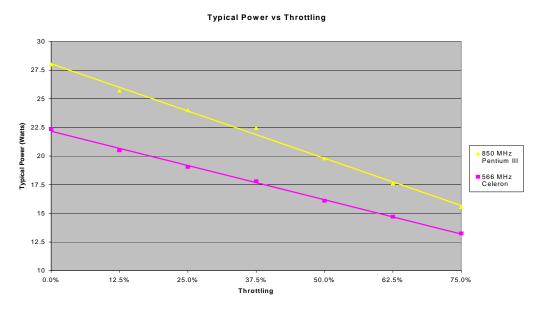



Figure 8

### **System RAM**

### **COMPATIBLE MEMORY MODULES**

The EPM-CPU-10 will accept one 144-pin SODIMM memory module with the following characteristics:

Storage Capacity 32 to 256 MB
Voltage 3.3 Volt
Error Detection Not supported
Error Correction Not supported
Type EPM-CPU -10k SDRAM PC-100 or faster

EPM-CPU-10g,h,m SDRAM PC-66 or faster

The following are qualified memory modules for the EPM-CPU-10. These modules are sold by VersaLogic under part number VL-MM4S-256.

- Crucial CT32M64S4W8E
- Micron MT16LSDF3264HG-10Ex2
- Micron MT16LSDF3264HG-10Ex4

### **CMOS RAM**

#### **CLEARING CMOS RAM**

Jumper VS1 can be moved to position [1-2] for 30 seconds to erase the contents of the CMOS RAM. Be sure to move the jumper back to position [2-3] for normal operation.

Note:

Operation with the jumper in the erase position [1-2] will cut-off all battery power to the CMOS RAM and Real Time Clock chip. The board will operate in this condition, however, this will force the board to use the factory default parameters as shown on page 9. For custom programming of the Factory Default Parameters, please contact the Customization Department at VersaLogic.

### **CMOS Setup Defaults**

The EPM-CPU-10 features the ability for users to modify the CMOS Setup defaults. This allows the system to boot up with user defined settings from cleared or corrupted CMOS RAM, battery failure, or battery-less operation. All CMOS setup defaults can be changed except the time and date.

Warning -

If the CMOS Setup defaults are set in a way that makes the system unbootable and unable for the user to enter CMOS Setup, the EPM-CPU-10 will need to be serviced by the factory.

### **Real Time Clock**

The *EPM-CPU-10* features a year 2000 compliant, battery-backed 146818 compatible real time clock/calendar chip. Under normal battery conditions, the clock will maintain accurate timekeeping functions during periods when the board is powered off.

### **SETTING THE CLOCK**

The CMOS Setup utility (accessed by pressing the [DEL] key during a system boot) can be used to set the time/date of the real time clock.

### **DiskOnChip**

A 32-pin socket (U1 on the I/O module) will accept an M-Systems DiskOnChip (DOC) Flash Disk for non-volatile, read/write data storage. The DOC can be configured as a boot device

### **ENABLE / DISABLE**

The DOC can be enabled or disabled through CMOS Setup by going into the Advanced Configuration screen and setting "DiskOnChip" to one of the three base addresses or "Disabled". When enabled, the DOC will take up 8KB at the base address specified.

#### **COMPATIBLE DEVICES**

Any 5 Volt, low profile M-Systems series DOC device will work.

### INSTALLING THE DOC CHIP

- 1. Align pin 1 on the DOC with pin 1 of socket U1 on the I/O module.
- 2. Push the DOC into the socket carefully until it is fully seated.

### Warning!

The DOC will be permanently damaged if installed incorrectly! When installing the DOC, be sure to align pin-1 on the chip with pin-1 on the socket. To prevent electrostatic damage, first touch a grounded surface to discharge any static electricity from your body.

### **CMOS SETUP**

To enable the DOC as drive C on a system without a hard disk, set the CMOS setup of drive C to "not installed", and reboot the computer.

### Note:

The DOC needs to be formatted with the System files in order for it to be a bootable drive. Refer to the M-Systems web site (www.m-sys.com) for documentation on the DOC 2000 and details on making it a bootable device.

### **Serial Ports**

The *EPM-CPU-10* features two on-board 16550 based serial channels located at standard PC I/O addresses. COM1 is an RS-232 (115.2K baud) serial port.

COM2 can be operated in RS-232, RS-422, or RS-485 modes. Two additional non-standard baud rates are also available (programmable in the normal baud rate registers) of 230K and 460K baud.

Interrupt assignment for each COM port is handled in CMOS Setup, and each port can be independently enabled or disabled.

### **COM PORT CONFIGURATION**

There are no configuration jumpers for COM1 because it only operates in RS-232 mode.

Jumper VS3 is used to configure COM2 for RS-232/422/485 operation. See page 18 and 19 for jumper configuration details.

### **COM2 RS-485 Mode Line Driver Control**

The TxD+/TxD- differential line driver can be turned on and off by manipulating the DTR handshaking line.

The following code example shows how to turn the line driver for COM2 on and off:

```
mov dx,02FCh ; Point to COM2 Modem Control register
in al,dx ; Fetch existing value
or al,01h ; Set bit D0
out dx,al ; Turn DTR on (enables line driver)

in al,dx ; Fetch existing value
and al,0FEh ; Clear bit D0
out dx,al ; Turn DTR off (disables line driver)
```

### **SERIAL PORT CONNECTORS**

See the *Connector Location Diagram* on pages 13 and 14 for connector and cable information. The pinout of the DB9 connector applies to use of the VersaLogic transition cable CBL-8001.

This connector is protected with IEC 61000-4-2 (Level 4) rated TVS components to help protect against ESD damage.

Table 8: Connectors JF / JG — Serial Port Pinout

| COM1<br>JS4<br>Pin | COM2<br>JS4<br>Pin | RS-232 | RS-422 | RS-485   | JF/JG<br>DB9<br>Pin |
|--------------------|--------------------|--------|--------|----------|---------------------|
| 21B                | 31B                | DCD    | _      | _        | 1                   |
| 22B                | 32B                | DSR    | _      | _        | 6                   |
| 23B                | 33B                | RXD*   | TxD+   | TxD+     | 2                   |
| 24B                | 34B                | RTS    | TxD-   | TxD-     | 7                   |
| 25B                | 35B                | TXD*   | _      | _        | 3                   |
| 26B                | 36B                | CTS    | Ground | Ground   | 8                   |
| 27B                | 37B                | DTR    | RxD-   | TxD/RxD- | 4                   |
| 28B                | 38B                | RI     | RxD+   | TxD/RxD+ | 9                   |
| 29B                | 39B                | Ground | Ground | Ground   | 5                   |
| 30B                | 40B                | N/C    | _      | _        | _                   |

### **Parallel Port**

The *EPM-CPU-10* includes a standard bi-directional/EPP/ECP compatible LPT port which resides at the PC standard address of 378h. The port can be enabled/disabled and interrupt assignments can be made via the CMOS Setup screen. The pinout of the JA connector applies to use of the VersaLogic transition cable CBL-8001.

This connector is protected with IEC 61000-4-2 (Level 4) rated TVS components to help protect against ESD damage.

**Table 9: LPT1 Parallel Port Pinout** 

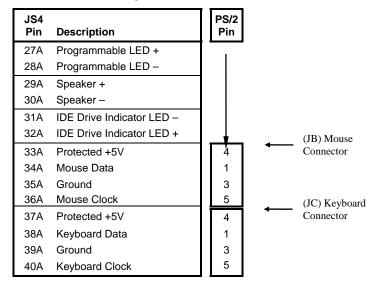
| JS4<br>Pin | Centronics<br>Signal | Signal<br>Direction | JA<br>Pin |
|------------|----------------------|---------------------|-----------|
| 1A         | Strobe               | Out                 | 1         |
| 2A         | Auto feed            | Out                 | 14        |
| 3A         | Data bit 1           | In/Out              | 2         |
| 4A         | Printer error        | In                  | 15        |
| 5A         | Data bit 2           | In/Out              | 3         |
| 6A         | Reset                | Out                 | 16        |
| 7A         | Data bit 3           | In/Out              | 4         |
| 8A         | Select input         | Out                 | 17        |
| 9A         | Data bit 4           | In/Out              | 5         |
| 10A        | Ground               | _                   | 18        |
| 11A        | Data bit 5           | In/Out              | 6         |
| 12A        | Ground               | _                   | 19        |
| 13A        | Data bit 6           | In/Out              | 7         |
| 14A        | Ground               | _                   | 20        |
| 15A        | Data bit 7           | In/Out              | 8         |
| 16A        | Ground               | _                   | 21        |
| 17A        | Data bit 8           | In/Out              | 9         |
| 18A        | Ground               | _                   | 22        |
| 19A        | Acknowledge          | In                  | 10        |
| 20A        | Ground               | _                   | 23        |
| 21A        | Port Busy            | In                  | 11        |
| 22A        | Ground               | _                   | 24        |
| 23A        | Paper End            | In                  | 12        |
| 24A        | Ground               | _                   | 25        |
| 25A        | Select               | In                  | 13        |

### **IDE Hard Drive / CD-ROM Interfaces**

One IDE interface is available to connect up to two hard disk or CD-ROM drives. Use CMOS Setup to specify the drive parameters of the attached drives.

**Warning!** Cable length must be 18" or less to maintain proper signal integrity. The grounds in this connector should not be used to carry motor current.

**Table 10: EIDE Hard Drive Connector Pinout** 


| JS3 | Signal | EIDE         |                           | JH/JJ |
|-----|--------|--------------|---------------------------|-------|
| Pin | Name   | Signal Name  | Function                  | Pin   |
| 1A  | HRST*  | Host Reset   | Reset signal from CPU     | 1     |
| 2A  | Ground | Ground       | Ground                    | 2     |
| 3A  | IDE7   | DATA 7       | Data bit 7                | 3     |
| 4A  | HD8    | DATA 8       | Data bit 8                | 4     |
| 5A  | HD6    | DATA 6       | Data bit 6                | 5     |
| 6A  | HD9    | DATA 9       | Data bit 9                | 6     |
| 7A  | HD5    | DATA 5       | Data bit 5                | 7     |
| 8A  | HD10   | DATA 10      | Data bit 10               | 8     |
| 9A  | HD4    | DATA 4       | Data bit 4                | 9     |
| 10A | HD11   | DATA 11      | Data bit 11               | 10    |
| 11A | HD3    | DATA 3       | Data bit 3                | 11    |
| 12A | HD12   | DATA 12      | Data bit 12               | 12    |
| 13A | HD2    | DATA 2       | Data bit 2                | 13    |
| 14A | HD13   | DATA 13      | Data bit 13               | 14    |
| 15A | HD1    | DATA 1       | Data bit 1                | 15    |
| 16A | HD14   | DATA 14      | Data bit 14               | 16    |
| 17A | HD0    | DATA 0       | Data bit 0                | 17    |
| 18A | HD15   | DATA 15      | Data bit 15               | 18    |
| 19A | Ground | Ground       | Ground                    | 19    |
| 20A | NC     | NC           | No connection             | 20    |
| 21A | NC     | NC           | No connection             | 21    |
| 22A | Ground | Ground       | Ground                    | 22    |
| 23A | HWR*   | HOST IOW*    | I/O write                 | 23    |
| 24A | Ground | Ground       | Ground                    | 24    |
| 25A | HRD*   | HOST IOR*    | I/O read                  | 25    |
| 26A | Ground | Ground       | Ground                    | 26    |
| 27A | NC     | NC           | No connection             | 27    |
| 28A | HAEN   | ALE          | Address latch enable      | 28    |
| 29A | NC     | NC           | No connection             | 29    |
| 30A | Ground | Ground       | Ground                    | 30    |
| 31A | HINT   | HOST IRQ14   | IRQ14                     | 31    |
| 32A | XI16*  | HOST IOCS16* | Drive register enabled    | 32    |
| 33A | HA1    | HOST ADDR1   | Address bit 1             | 33    |
| 34A | NC     | NC           | No connection             | 34    |
| 35A | HA0    | HOST ADDR0   | Address bit 0             | 35    |
| 36A | HA2    | HOST ADDR2   | Address bit 2             | 36    |
| 37A | HCS0*  | HOST CS0*    | Reg. access chip select 0 | 37    |
| 38A | HCS1*  | HOST CS1*    | Reg. access chip select 1 | 38    |
| 39A | NC     | NC           | No connection             | 39    |
| 40A | Ground | Ground       | Ground                    | 40    |

### **Utility Connector**

#### **KEYBOARD/MOUSE INTERFACE**

A standard PS/2 keyboard and mouse interface is accessible through connector JS4. In addition, you will find a programmable LED output, hard drive activity LED, and a speaker output as shown in the table below. The pinout of the PS/2 connectors applies to use of the VersaLogic transition cable CBL-8001.

This connector is protected with IEC 61000-4-2 (Level 4) rated TVS components to help protect against ESD damage.



**Table 11: Utility Connector** 

#### PROGRAMMABLE LED

The high-density I/O connector JS4 includes an output signal for attaching a software controlled LED. Connect the cathode of the LED to JS4[28A]; anode to JS4[27A]. An on-board resistor limits the current to 15 mA when the circuit is turned on.

To turn the LED on and off, set or clear bit D7 in I/O port 0E0h (or 1E0h if selected in CMOS Setup). When changing the register, make sure not to alter the value of the other bits.

The following code examples show how to turn on and off the LED. Refer to page 44 for further information:

| LED ( | On     | LED O | ff     |
|-------|--------|-------|--------|
| in    | al,E0h | in    | al,E0h |
| or    | al,80h | and   | al,7Fh |
| out   | E0h,al | out   | E0,al  |

**Note:** The LED is turned on by the BIOS during system startup. This causes the light to function as a "power on" indicator if it is not otherwise controlled by user code.

#### **EXTERNAL SPEAKER**

A miniature 8 ohm speaker can be connected between JS4[29A] and JS4[30A].

This connector is protected with IEC 61000-4-2 (Level 4) rated TVS components to help protect against ESD damage.

### **Push-Button Reset**

A normally open, momentary action push-button reset switch can be connected between JS4[19B] and JS4[20B]. Shorting JS4[19B] to ground will cause the *EPM-CPU-10* to reboot.

This connector is protected with IEC 61000-4-2 (Level 4) rated TVS components to help protect against ESD damage.

### **Floppy Drive Interface**

The *EPM-CPU-10* supports a standard 34-pin PC/AT style floppy disk interface via connector JS3[JK] and JS3[JL]. Up to two floppy drives can be attached. CMOS Setup can be used to enable or disable the floppy disk interface.

**Note:** The floppy drive used to boot the system (Drive A) should be connected after the

twist in the cable, JS3[JK].

Warning! Cable length must be 18" or less to maintain proper signal integrity. The grounds in

this connector should not be used to carry motor current.

**Table 12: Floppy Disk Interface Connector Pinout** 

| JS3 | Signal |                    | Jł | (/JL |
|-----|--------|--------------------|----|------|
| Pin | Name   | Function           | F  | Pin  |
| 1B  | Ground | Ground             |    | 1    |
| 2B  | R/LC   | Load Head          |    | 2    |
| 3B  | Ground | Ground             |    | 3    |
| 4B  | NC .   | No Connection      |    | 4    |
| 5B  | Ground | Ground             |    | 5    |
| 6B  | NC .   | No Connection      |    | 6    |
| 7B  | Ground | Ground             |    | 7    |
| 8B  | INDX*  | Beginning Of Track |    | 8    |
| 9B  | Ground | Ground             |    | 9    |
| 10B | MTR1*  | Motor Enable 1     |    | 10   |
| 11B | Ground | Ground             |    | 11   |
| 12B | DRV0*  | Drive Select 0     |    | 12   |
| 13B | Ground | Ground             |    | 13   |
| 14B | DRE1*  | Drive Select 1     |    | 14   |
| 15B | Ground | Ground             |    | 15   |
| 16B | MTR0*  | Motor Enable 0     |    | 16   |
| 17B | Ground | Ground             |    | 17   |
| 18B | DIR    | Direction Select   |    | 18   |
| 19B | Ground | Ground             |    | 19   |
| 20B | STEP*  | Motor Step         |    | 20   |
| 21B | Ground | Ground             |    | 21   |
| 22B | WDAT*  | Write Data Strobe  |    | 22   |
| 23B | Ground | Ground             |    | 23   |
| 24B | WGAT*  | Write Enable       |    | 24   |
| 25B | Ground | Ground             |    | 25   |
| 26B | TRK0*  | Track 0 Indicator  |    | 26   |
| 27B | Ground | Ground             |    | 27   |
| 28B | WPRT*  | Write Protect      |    | 28   |
| 29B | Ground | Ground             |    | 29   |
| 30B | RDAT*  | Read Data          |    | 30   |
| 31B | Ground | Ground             |    | 31   |
| 32B | HDSL   | Head Select        |    | 32   |
| 33B | Ground | Ground             |    | 33   |
| 34B | DCHG   | Drive Door Open    |    | 34   |

### **Video Interface**

An on-board ATi Rage<sup>TM</sup> XL/Mobility video controller with 4MB video RAM on the EPM-CPU-10 provides full SVGA video output capabilities for the *EPM-CPU-10*.

#### **VIDEO RESOLUTIONS**

This table displays the EPM-CPU-10 standard VESA SVGA modes and color depths.

**Table 13: Video Resolutions** 

| 4 MB Video RAM<br>(EPM-CPU-10) |
|--------------------------------|
| 640 x 480, 16M colors          |
| 800 x 600, 16M colors          |
| 1024 x 768, 16M colors         |
| 1280 x 1024, 64K colors        |
| 1600 X 1200, 64K colors        |

#### **VIDEO OUTPUT CONNECTOR**

See the *Connector Location Diagram* on page 13 for pin and connector location information. An adapter cable, part number CBL-1007 is available to translate JN2 into a standard 15-pin D-Sub SVGA connector.

This connector is protected with IEC 61000-4-2 (Level 4) rated TVS components to help protect against ESD damage.

**Table 14: Video Output Pinout** 

| JN2<br>Pin | Signal<br>Name | Function        | Mini DB15<br>Pin |
|------------|----------------|-----------------|------------------|
| 1          | GND            | Ground          | 6                |
| 2          | CRED           | Red Video       | 1                |
| 3          | GND            | Ground          | 7                |
| 4          | CGRN           | Green Video     | 2                |
| 5          | GND            | Ground          | 8                |
| 6          | CBLU           | Blue Video      | 3                |
| 7          | GND            | Ground          | 5                |
| 8          | CHSYNC         | Horizontal Sync | 13               |
| 9          | GND            | Ground          | 10               |
| 10         | CVSYNC         | Vertical Sync   | 14               |

#### FLAT PANEL DISPLAY CONNECTOR

See the *Connector Location Diagram* on page 13 for pin and connector location information.

**Table 15: Flat Panel Display Pinout** 

| Pin                | Signal<br>Name | Function                                                 | Color<br>TFT<br>18-bit/<br>24-bit<br>VBIOS | Color<br>TFT<br>24-bit | Color<br>LVDS<br>18-bit | Color<br>LVDS<br>24-bit | Color<br>TFT<br>18-bit<br>(only)<br>VBIOS |
|--------------------|----------------|----------------------------------------------------------|--------------------------------------------|------------------------|-------------------------|-------------------------|-------------------------------------------|
| JN4[1]             | +12V           | Power Supply                                             |                                            |                        |                         |                         |                                           |
| JN4[2]             | +12V           | Power Supply                                             |                                            |                        |                         |                         |                                           |
| JN4[3]             | GND            | Ground                                                   |                                            |                        |                         |                         |                                           |
| JN4[4]             | GND            | Ground                                                   |                                            |                        |                         |                         |                                           |
| JN4[5]             | +5V            | Power Supply                                             |                                            |                        |                         |                         |                                           |
| JN4[6]             | +5V            | Power Supply                                             |                                            |                        |                         |                         |                                           |
| JN4[7]             | ENAVEE         | Power sequencing control for LCD bias voltage            |                                            |                        |                         |                         |                                           |
| JN4[8]             | GND            | Ground                                                   |                                            |                        |                         |                         |                                           |
| JN4[9]             | FP0            | Data Output                                              |                                            | B0                     |                         |                         | B0                                        |
| JN4[10]            | FP1            | u u                                                      |                                            | B1                     |                         |                         | B1                                        |
| JN4[11]            | FP2            | u u                                                      | B0                                         | B2                     |                         |                         | B2                                        |
| JN4[12]            | FP3            | ee ee                                                    | B1                                         | В3                     |                         |                         | B3                                        |
| JN4[13]            | FP4            | a a                                                      | B2                                         | B4                     |                         |                         | B4                                        |
| JN4[14]            | FP5            | a a                                                      | B3                                         | B5                     |                         |                         | B5                                        |
| JN4[15]            | FP6            |                                                          | B4                                         | B6                     |                         |                         |                                           |
| JN4[16]            | FP7            | и                                                        | B5                                         | B7                     |                         |                         |                                           |
| JN4[17]            | FP8            | 14 11                                                    |                                            | G0                     |                         | TX3-                    | G0                                        |
| JN4[18]            | FP9            | " "                                                      |                                            | G1                     |                         | TX3+                    | G1                                        |
| JN4[19]            | FP10           | 66 66<br>66                                              | G0                                         | G2                     |                         |                         | G2                                        |
| JN4[20]            | FP11           | 4 4                                                      | G1                                         | G3                     |                         |                         | G3                                        |
| JN4[21]            | FP12           | 4 4                                                      | G2                                         | G4                     |                         |                         | G4                                        |
| JN4[22]            | FP13           |                                                          | G3                                         | G5                     |                         |                         | G5                                        |
| JN4[23]            | FP14           |                                                          | G4                                         | G6                     |                         |                         |                                           |
| JN4[24]            | FP15           | " "                                                      | G5                                         | G7                     |                         |                         |                                           |
| JN4[25]            | FP16           | " "                                                      |                                            | R0                     | TX0-                    | TX0-                    | R0                                        |
| JN4[26]            | FP17           | " "                                                      |                                            | R1                     | TX0+                    | TX0+                    | R1                                        |
| JN4[27]            | FP18           | " "                                                      | R0                                         | R2                     | TX1-                    | TX1-                    | R2                                        |
| JN4[28]            | FP19           | " "                                                      | R1                                         | R3                     | TX1+                    | TX1+                    | R3                                        |
| JN4[29]            | FP20<br>FP21   | " "                                                      | R2<br>R3                                   | R4<br>R5               | TX2-<br>TX2+            | TX2-<br>TX2+            | R4<br>R5                                  |
| JN4[30]            | FP21           | u u                                                      | R4                                         | R6                     | TXCLK-                  | TXCLK-                  | K5                                        |
| JN4[31]            |                | " "                                                      | R4<br>R5                                   | R7                     |                         | _                       |                                           |
| JN4[32]            | FP23<br>GND    |                                                          | ся                                         | K/                     | TXCLK+                  | TXCLK+                  |                                           |
| JN4[33]            | GND            | Ground                                                   | 1                                          |                        | <b> </b>                |                         |                                           |
| JN4[34]<br>JN4[35] | SHFCLK         | Ground<br>Shift Clock.                                   | 1                                          |                        | <b> </b>                |                         |                                           |
|                    | FLM            | Pixel clock for flat panel data.                         |                                            |                        |                         |                         |                                           |
| JN4[36]            | DE             | First Line Marker. Flat panel equivalent of VSYNC.       |                                            |                        |                         |                         |                                           |
| JN4[37]            |                | Display Enable or<br>M signal (ADCCLK) or BLANK#         |                                            |                        |                         |                         |                                           |
| JN4[38]            | LP             | Latch Pulse.<br>Flat panel equivalent of HSYNC.          |                                            |                        |                         |                         |                                           |
| JN4[39]            | GND            | Ground                                                   | 1                                          |                        |                         |                         |                                           |
| JN4[40]            | ENABKL         | Enable Backlight. Can be programmed for other functions. |                                            |                        |                         |                         |                                           |
| JN4[41]            | DDCDATA        | Serial Data                                              |                                            |                        |                         |                         |                                           |
| JN4[42]            | DDCCLK         | Serial Data                                              |                                            |                        |                         |                         |                                           |
| JN4[43]            | +3V            | Power Supply                                             |                                            |                        |                         |                         |                                           |
| JN4[44]            | +3V            | Power Supply                                             |                                            |                        |                         |                         |                                           |

#### **COMPATIBLE FLAT PANEL DISPLAYS**

The following list of flat panel displays are reported to work properly with the ATi Rage TM XL/Mobility video controller chip used on the *EPM-CPU-10*:

- Sharp LQ057Q3DC02
- Sharp LQ084V1DG21
- Sharp LQ10D344
- Sharp LQ10D346
- Sharp LQ10D367
- Sharp LQ10D421
- Sharp LQ9D161
- Sharp LQ9D340
- Sharp LQ10D131
- Sharp LQ12S08
- Sharp LQ12S31
- Sharp LQ12S41
- Sharp LQ64D142
- Sharp LQ64D341
- Sharp LQ64D343
- Sharp LQ104V1DG11
- Sharp LM64K101
- Sharp LM64P101
- Sharp LM64P839
- Sharp LM32P10
- Sharp LM8V31
- Sharp LM64C35P
- NEC NL6448AC33-27
- NEC NL6448AC33-18
- NEC NL6448AC33-24
- LG Elec. LCA4VE02A
- LG Elec. LP104S2
- Samsung LT104V4-101
- Hitachi TX31D27VC1CAB
- Hitachi TX26D80VC1CAA

### **Ethernet Interface**

The EPM-CPU-10 features an industry-standard 10baseT / 100baseTX Ethernet interface based on the Intel 82551ER interface chip. While this interface is not NE2000 compatible, the 82551ER series is widely supported. Drivers are readily available to support a variety of operating systems such as QNX, VxWorks and other RTOS vendors.

#### **ETHERNET CONNECTOR**

**Table 16: RJ45 Ethernet Connector** 

| JS4<br>Pin | Signal<br>Name | Function        | JE<br>Pin |   |
|------------|----------------|-----------------|-----------|---|
| 11B        | IGND           | Isolated Ground | 4         |   |
| 12B        | IGND           | Isolated Ground | 5         |   |
| 13B        | R-             | Receive Data -  | 6         | ı |
| 14B        | R+             | Receive Data +  | 3         | ı |
| 15B        | IGND           | Isolated Ground | 7         |   |
| 16B        | IGND           | Isolated Ground | 8         |   |
| 17B        | T-             | Transmit Data - | 2         |   |
| 18B        | T+             | Transmit Data + | 1         |   |

### **Ethernet Status**

A dual LED (D2) indicates the status of the Ethernet port.

Yellow = 10/100 Off = 10 Base T On = 100 Base T Green = Link/Activity On = (solid) Link

Off = (Flickers) Blinks Activity

### **Watchdog Timer**

A watchdog timer circuit is included on the EPM-CPU-10 to reset the CPU or issue a NMI if proper software execution fails or a hardware malfunction occurs.

#### **ENABLING THE WATCHDOG**

To enable or disable the watchdog to reset the CPU, set or clear bit D0 in I/O port 0E0h (or 1E0h). When changing the contents of the register, make sure not to alter the value of the other bits. To prevent sporadic system reset at the moment the watchdog is enabled, care must be taken to use the procedure shown below.

The following code example enables the watchdog reset:

```
al,E0h
                      ;Clear bit D2 (WDOGSTA) in the SCR register
            al,FBh
      and
      out
            E0h,al
loop: in
            al,E0h
                      ;Loop while bit D2 (WDOGSTA) = 0
      and
            al,04h
            loop
      jΖ
      in
            al,E0h
                      ; Enable the watchdog (reset mode)
            al,01h
      or
      out
            E0h,al
```

To enable or disable the watchdog to issue an NMI, set or clear bit D1 in I/O per 0E0h (or 1E0h). When changing the contents of the register, make sure not to alter the value of the other bits. It is recommend to refresh the watchdog prior to enabling or disabling the watchdog. Bit D2 can be read to determine if watchdog timer has expired.

The following code example enables the watchdog NMI:

```
in al,E0h ;Enable the watchdog(NMI mode)
or al,01h
out E0h,al
```

**Note:** The watchdog timer powers up and resets to a disabled state.

#### REFRESHING THE WATCHDOG

If the watchdog timer is enabled, software must periodically refresh the watchdog timer at a rate faster than the timer is set to expire (1.0 sec minimum). Outputting a 5Ah to the *Watchdog Timer Hold-Off Register* at 0E1h (or 1E1h) resets the watchdog time-out period, see page 44 for additional information.

There is no provision for selecting a different timeout period using software.

The following code example refreshes the watchdog:

```
mov al,5Ah
out E1h,al
```

## **CPU Temperature Monitor**

A thermometer circuit is located directly under the CPU chip which constantly monitors the case temperature of the CPU. This circuit can be used to detect over-temperature conditions which can result from fan or heat sink failure or excessive ambient temperatures.

CMOS Setup is used to set the temperature detection threshold. A status bit in the *Special Control Register* can be read to determine if the case temperature is above or below the threshold.

The system can be configured to generate a Non-Maskable Interrupt (NMI) when the temperature exceeds the threshold.

See page 44 for additional information.

### **USB1.1 Interface**

A USB 1.1 (Universal Serial Bus) connector provides a common interface to connect a wide variety of keyboards, modems, mice, and telephony devices to the *EPM-CPU-10*. With USB 1.1, there is no need to have separate connectors for many common PC peripherals.

The USB 1.1 interface on the *EPM-CPU-10* is UHCI (Universal Host Controller Interface) compatible, which provides a common industry software/hardware interface.

This connector is protected with IEC 61000-4-2 (Level 4) rated TVS components to help protect against ESD damage.

| JS4<br>Pin | Signal<br>Name | Function         | JD<br>Pin |
|------------|----------------|------------------|-----------|
| 1B         | USBPWR1        | +5V (Protected)  | 1         |
| 2B         | GND            | Ground           | 6         |
| 3B         | USBP00         | Channel 0 Data - | 2         |
| 4B         | GND1           | Cable Shield     | 7         |
| 5B         | USBP01         | Channel 0 Data + | 3         |
| 6B         | USBP11         | Channel 1 Data + | 8         |
| 7B         | GND1           | Cable Shield     | 4         |
| 8B         | USBP10         | Channel 1 Data - | 9         |
| 9B         | GND            | Ground           | 5         |
| 10B        | USBPWR1        | +5V (Protected)  | 10        |

**Table 17: USB 1.1 Interface Connector** 

#### Warning!

Connector JD is not numbered in the conventional manner as most dual-row headers. Care must be taken to attach the USB 1.1 adapter cables as shown below to prevent voltage reversal.

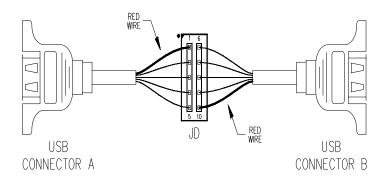



Figure 9. USB 1.1 Connector Orientation Diagram

### **Expansion Bus**

The *EPM-CPU-10* will accept up to four PC/104 and/or four PC/104-*Plus* expansion modules. Both 3.3V and 5.0V modules are supported.

#### PC/104-PLUS

PC/104-*Plus* modules can be secured directly to the underside of the *EPM-CPU-10* The first added module (closest to CPU) is called "Slot 0", the next module is "Slot 1". Make sure to correctly configure the "slot position" jumpers on each PC/104-*Plus* module appropriately.

The BIOS automatically configures the I/O ports and Memory map allocation, including allocation of interrupts.

#### PC/104

PC/104 modules are stacked under the *EPM-CPU-10* (under any PC/104-*Plus* modules); 16-bit modules first followed by 8-bit PC/104 modules. If necessary, a 40-pin and 64-pin ISA feedthrough connector "extender", and long standoffs may need to be used to provide adequate clearance between the PCI connector and the components on the top side of the PC/104 module.

#### I/O CONFIGURATION

#### PC/104-Plus Modules

No configuration is necessary except to jumper the expansion module for the correct slot number.

#### PC/104 Modules

PC/104 I/O modules should be addressed in the 100h – 3FFh address range. Care must be taken to avoid the I/O addresses shown in the *On-Board I/O Devices* table on page 42. These ports are used by on-board peripherals and video devices.

# Memory and I/O Map

#### **MEMORY MAP**

The lower 1 MB memory map of the EPM-CPU-10 is arranged as shown in the following table.

Various blocks of memory space between A0000h and FFFFh can be shadowed. CMOS setup is used to enable or disable this feature.

**Table 18: Memory Map** 

| Start<br>Address | End<br>Address | Comment                             |
|------------------|----------------|-------------------------------------|
| E0000h           | FFFFFh         | System BIOS, Flash Page (BIOS Ext.) |
| D0000h           | DFFFFh         | PC/104, and DOC                     |
| C0000h           | CFFFFh         | Video BIOS                          |
| A0000h           | BFFFFh         | Video RAM                           |
| 00000h           | 9FFFFh         | System DRAM                         |

Note:

The memory region from E0000h-EFFFFh is controlled by the Map and Paging Control Register.

#### I/O MAP

The following table lists the common I/O devices in the EPM-CPU-10 I/O map. User I/O devices should be added in the 100h-3FFh range, using care to avoid the devices already in the map as shown below.

Table 19: On-Board I/O Devices

| I/O Device                                    | Standard<br>I/O Addresses | Alternate * I/O Addresses |
|-----------------------------------------------|---------------------------|---------------------------|
| Special Control Register                      | 0E0h                      | 1E0h                      |
| Watchdog Hold-Off Register/Revision Indicator | 0E1h                      | 1E1h                      |
| Special Control Register                      | 0E2h                      | 1E2h                      |
| Map and Paging Control Register               | 0E3h                      | 1E3h                      |
| Primary Hard Drive Controller                 | 1F0h - 1F7h               |                           |
| COM2 Serial Port                              | 2F8h - 2FFh               |                           |
| Super I/O                                     | 370h - 371h               |                           |
| LPT1 Parallel Port                            | 378h - 37Fh               |                           |
| SVGA Video                                    | 3B0h - 3DFh               |                           |
| Floppy Disk Controller                        | 3F0h - 3F7h               |                           |
| COM1 Serial Port                              | 3F8h - 3FFh               |                           |

<sup>\*</sup> User selectable via CMOS Setup.

## **Interrupt Configuration**

The *EPM-CPU-10* has the standard complement of PC type interrupts. Ten non-shared interrupts are routed to the PC/104 bus, and up to four IRQ lines are automatically allocated as needed to PCI devices.

There are no interrupt configuration jumpers. All configuration is handled through CMOS setup. The switches in the diagram below indicate the various CMOS Setup options. Closed switches show factory default settings.

The temperature monitor interrupt and watchdog interrupt are enabled/disabled with the *Special Control Register*.

**Note:** If your design needs to use interrupt lines on the PC/104 bus, we recommend using IRQ5, IRQ9, and/or IRQ10.

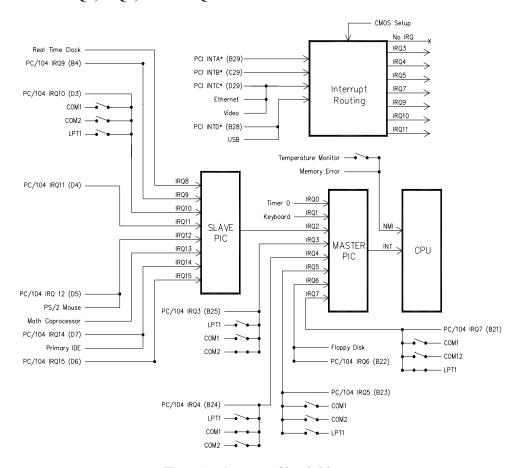



Figure 10. Interrupt Circuit Diagram

# **Special Control Register**

### SCR (READ/WRITE) 00E0h (or 01E0h via CMOS Setup)

| D7  | D6       | D5  | D4  | D3      | D2      | D1      | D0      |
|-----|----------|-----|-----|---------|---------|---------|---------|
| LED | OVERTEMP | GPI | GPO | HDOGNMI | WDOGSTA | WDOGNMI | WDOGRST |

**Table 20: Special Control Register Bit Assignments** 

| Bit | Mnemonic | Description                                                                                                                                                   |
|-----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D7  | LED      | Light Emitting Diode — Controls the programmable LED connected to JS4[27A/28A]                                                                                |
|     |          | LED = 0 Turns LED off.                                                                                                                                        |
|     |          | LED = 1 Turns LED on.                                                                                                                                         |
| D6  | OVERTEMP | Temperature Status — Indicates CPU die temperature.                                                                                                           |
|     |          | TEMP = 0 CPU die temperature is below value set in CMOS Setup                                                                                                 |
|     |          | TEMP = 1 CPU die temperature is above value set in CMOS Setup                                                                                                 |
|     |          | Note: This bit is a read-only bit.                                                                                                                            |
| D5  | GPI      | General Purpose Input — Indicates the status of TTL input at JS3[38B].                                                                                        |
|     |          | GPI = 0 Logic High                                                                                                                                            |
|     |          | GPI = 1 Logic Low                                                                                                                                             |
|     |          | Note: This bit is a read-only bit.                                                                                                                            |
| D4  | GPO      | General Purpose Output — Controls TTL output at JS3[37B].                                                                                                     |
|     |          | GPO = 0 Logic High                                                                                                                                            |
|     |          | GPO = 1 Logic Low                                                                                                                                             |
| D3  | HDOGNMI  | Non-Maskable Interrupt Enable — Controls the generation of Non-Maskable Interrupts whenever the CPU temperature sensor detects an over-temperature condition. |
|     |          | HDOGNMI = 0 Disable                                                                                                                                           |
|     |          | HDOGNMI = 1 Enable                                                                                                                                            |
| D2  | WDOGSTA  | WDOG STATUS — Indicates if the watchdog timer has expired.                                                                                                    |
|     |          | WDOGSTA = 0 Timer has not expired.                                                                                                                            |
|     |          | WDOGSTA = 1 Timer has expired.                                                                                                                                |
| D1  | WDOGNMI  | Watch Dog Non-Maskable Interrupt Enable — Enables the generation of a Non-maskable interrupt when the watchdog timer expires.                                 |
|     |          | WDOGNMI = 0 Disables                                                                                                                                          |
|     |          | WDOGNMI = 1 Enables                                                                                                                                           |
| D0  | WDOGRST  | Watch Dog Reset Enable — Enables and disables the watchdog timer reset circuit.                                                                               |
|     |          | WDOGRST = 0 Disables the watchdog timer.                                                                                                                      |
|     |          | WDOGRST = 1 Enables the watchdog timer.                                                                                                                       |

# **Revision Indicator Register**

### REVIND (READ ONLY) 00E1h (or 01E1h via CMOS Setup)

| D7  | D6  | D5  | D4  | D3  | D2  | D1   | D0   |
|-----|-----|-----|-----|-----|-----|------|------|
| PC4 | PC3 | PC2 | PC1 | PC0 | TCO | REV1 | REV0 |

This register is used to indicate the revision level of the EPM-CPU-10 product.

| Bit   | Mnemonic  | Description                                                                                                                                                            |  |  |  |  |  |
|-------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| D7-D3 | PC4-PC0   | <b>Product Code</b> — These bits are hard coded to represent the product type. The EPM-CPU-10 will always read as 00010. Other codes are reserved for future products. |  |  |  |  |  |
|       |           | PC4 PC3 PC2 PC1 PC0 Product Code                                                                                                                                       |  |  |  |  |  |
|       |           | 0 0 0 1 0 EPM-CPU-10  Note: These bits are read-only.                                                                                                                  |  |  |  |  |  |
| D2    | TCO       | <b>Throttling Code</b> — This bit specifies how throttling is enabled at power-up and reset.                                                                           |  |  |  |  |  |
|       |           | 0 = EPM-CPU-10h No Throttling<br>EPM-CPU-10k                                                                                                                           |  |  |  |  |  |
|       |           | 1 = EPM-CPU-10g Throttling set at 37.5%<br>EPM-CPU-10m                                                                                                                 |  |  |  |  |  |
|       |           | Note: This bit is read-only.                                                                                                                                           |  |  |  |  |  |
| D1-D0 | REV1-REV0 | <b>Revision Level</b> — These bits are representative of the EPM-CPU-10 circuit revision level.                                                                        |  |  |  |  |  |
|       |           | REV1 REV0 Revision Level                                                                                                                                               |  |  |  |  |  |
|       |           | 0 0 Rev 3 or earlier                                                                                                                                                   |  |  |  |  |  |
|       |           | 0 1 Rev 3.01                                                                                                                                                           |  |  |  |  |  |
|       |           | 1 0 Rev 4.00 or later<br>1 1 Reserved                                                                                                                                  |  |  |  |  |  |
|       |           | The served                                                                                                                                                             |  |  |  |  |  |
|       |           | Note: These bits are read-only.                                                                                                                                        |  |  |  |  |  |

# **Watchdog Timer Hold-Off Register**

#### WDHOLD (WRITE ONLY) 00E1h (or 01E1h via CMOS Setup)

| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----|----|----|----|----|----|----|
| 0  | 1  | 0  | 1  | 1  | 0  | 1  | 0  |

A watchdog timer circuit is included on the EPM-CPU-10 board to reset the CPU or issue an NMI if proper software execution fails or a hardware malfunction occurs. The watchdog timer is enabled/disabled by writing to bit D0 of SCR

If the watchdog timer is enabled, software must periodically refresh the watchdog timer at a rate faster than the timer is set to expire (1 second minimum). Writing a 5Ah to WDHOLD resets the watchdog timeout period, preventing the CPU from being reset or generation of NMI for the next 1 second.

# **Special Control Register**

#### SCR (READ/WRITE) 00E2h (or 01E2h via CMOS setup)

| D7       | D6       | D5       | D4       | D3       | D2       | D1  | D0       |
|----------|----------|----------|----------|----------|----------|-----|----------|
| Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | JPI | Throttle |

**Table 21: Special Control Register Bit Assignments** 

| Bit   | Mnemonic | Description                                                                                            |
|-------|----------|--------------------------------------------------------------------------------------------------------|
| D7-D2 | Reserved | Reserved — These bits have no function.                                                                |
| D1    | JPI      | Jumper Input — Indicates the status of jumper VS2[5-6]                                                 |
|       |          | JPI = 0 Jumper VS2[5-6] = Out                                                                          |
|       |          | JPI = 1 Jumper VS2[5-6] = In                                                                           |
|       |          | Note: This bit is a read-only bit.                                                                     |
| D0    | Throttle | Throttling Enable — Enables and disables CPU throttling.  Throttling = 0 Disable Throttling = 1 Enable |
|       |          | Note: Models H & K are read write. Models G & M are set only and cleared by Reset.                     |

# **Map and Paging Control Register**

### MPCR (READ/WRITE) 00E3H (or 01E3h via CMOS Setup)

| D7    | D6     | D5     | D4     | D3     | D2  | D1  | D0  |
|-------|--------|--------|--------|--------|-----|-----|-----|
| FPGEN | DOCEN1 | DOCEN0 | SB-SEL | VB-SEL | PG2 | PG1 | PG0 |

Table 22: Map and Paging Control Register Bit Assignments

| Bit   | Mnemonic          | Descrip                       | otion                                                            |                                             |                                                                           |  |  |
|-------|-------------------|-------------------------------|------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------|--|--|
| D7    | FPGEN             |                               |                                                                  |                                             | Enables a 64K page frame from E0000h to ess to the on-board FLASH memory. |  |  |
|       |                   | FPGEN                         | = 0                                                              | FLASH page frame disabled.                  |                                                                           |  |  |
|       |                   | FPGEN                         | = 1                                                              | FLASH                                       | page frame enabled.                                                       |  |  |
| D6-D5 | DOCEN1-<br>DOCENO | DiskOn<br>Disk on             |                                                                  | able — Er                                   | nables a 8K page frame used to gain access to the                         |  |  |
|       |                   | PG2 PG1                       |                                                                  | Memory Range within DiskOnChip              |                                                                           |  |  |
|       |                   | 0<br>0<br>1<br>1              | 0<br>1<br>0<br>1                                                 | Disabled<br>D000:0<br>D800:0<br>DE00:0      | d                                                                         |  |  |
| D4    | SB-SEL            | System                        | System BIOS Selection — Indicates the status of jumper VS2[1-2]. |                                             |                                                                           |  |  |
|       |                   | SB-SEL                        | = 0                                                              | Jumper out, Secondary System BIOS selected. |                                                                           |  |  |
|       |                   | SB-SEL                        | = 1                                                              | Jumper in, Primary System BIOS selected.    |                                                                           |  |  |
|       |                   | Note: This is a read-only bit |                                                                  |                                             |                                                                           |  |  |
| D3    | VB-SEL            | Video B                       | Video BIOS Selection — Indicates the status of jumper VS2[3-4].  |                                             |                                                                           |  |  |
|       |                   | VB-SEL                        | = 0                                                              | Jumper                                      | out, Secondary System BIOS selected.                                      |  |  |
|       |                   | VB-SEL                        | VB-SEL = 1 Jumper in, Primary System BIOS selected.              |                                             |                                                                           |  |  |
|       |                   | Note: The                     | Note: This is a read-only bit                                    |                                             |                                                                           |  |  |
| D2-D0 | PG2-PG0           |                               |                                                                  | Selects whi<br>to EFFFF                     | ch 64K block of FLASH will be mapped into the page<br>า                   |  |  |
|       |                   |                               |                                                                  |                                             | Memory Range within                                                       |  |  |
|       |                   | PG2                           | PG1                                                              | PG0                                         | FLASH                                                                     |  |  |
|       |                   | 0                             | 0                                                                | 0                                           | 000000h to 00FFFFh                                                        |  |  |
|       |                   | 0                             | 0<br>1                                                           | 1<br>0                                      | 010000h to 01FFFFh<br>020000h to 02FFFFh                                  |  |  |
|       |                   | 0                             | 1                                                                | 1                                           | 030000h to 03FFFFh                                                        |  |  |
|       |                   | 1                             | 0                                                                | 0                                           | 040000h to 04FFFFh                                                        |  |  |
|       |                   | 1                             | 0                                                                | 1                                           | 050000h to 05FFFFh                                                        |  |  |
|       |                   | 1                             | 1                                                                | 0                                           | 060000h to 06FFFFh                                                        |  |  |
|       |                   | 1                             | 1                                                                | 1                                           | 070000h to 07FFFFh                                                        |  |  |



# **Appendix A** — Other References

PC Chipset <u>Intel Corporation</u> (http://developer.intel.com/design/index.htm)

440BX Chipset

Ethernet Controller <u>Intel Corporation</u> (http://developer.intel.com/design/index.htm)

Intel 82551ER

Video Controller <u>ATi Rage XL/Mobility</u> (http://ati.amd.com/)

Disk On Chip M-Systems Inc. (http://www.m-sys.com/)

DOC2000

PC/104 Specification <u>VersaLogic Corp.</u>

(http://www.versalogic.com/support/pdf/PC104Specv246.pdf)

PC/104-*Plus* Specification <u>VersaLogic Corp.</u>

(http://www.versalogic.com/support/pdf/PC104-PlusV125.pdf)

Microsoft Press (http://www.microsoft.com/learning/books/)

**CPU Chips** 

Celeron Intel Corporation (http://developer.intel.com/design/index.htm)

Pentium III

General PC Documentation

The Programmer's PC

Sourcebook

General PC Documentation Po

The Undocumented PC

Powell's Books (www.powells.com)